
Structured goal formalisation applied to medical guidelines.
"From Natural Language to Formal Proof Goal"

MSc Thesis
Ruud Stegers
March 2006

Reduction
- to a purely descriptive form

Normalisation
- to a structured natural language version

Formalisation
- into the Goal Description Language

Attachment
- to the process model to verify

Translation
- to the logic of the verification tool

Supervisors: Dr. Annette Ten Teije
Prof. Dr. Frank van Harmelen

Artificial Intelligence
Knowledge Management and Knowledge Technology

Faculty of Sciences
Vrije Universiteit
Amsterdam

ABSTRACT

In the Protocure project, medical guidelines are formalised to enable
the use of formal verification methods to improve those guidelines.
To verify goals given in natural language, a translation is required to
the formalism of the verification tool. The main concern is to assure
equivalence of the translation and the original. In general this is a
problem. When the domain expert and the expert on formal methods
are different persons, neither has sufficient knowledge to check this
equivalence. A method is required to assure equivalence also in these
cases.

This thesis proposes a goal formalisation method in which the domain
expert is involved in such a way, that the correctness of the result
can be assured. By providing a common conceptual model of goals,
the domain expert and the formal method expert share a frame of
reference. Both have their own representation of this model: one in
natural language, one in a newly introduced formal language GDL:
the Goal Definition Language.

Throughout the thesis examples from the medical domain are pro-
vided, although the applicability of the method transcends the bound-
aries of any specific domain. The conclusion shows that the proposed
method satisfies amongst others, requirements in area of correctness,
traceability, variability and reusability.

iii

iv

ACKNOWLEDGEMENTS

I would like to thank the following people for their role in the realisation of this
thesis

• My supervisors Annette ten Teije and Frank van Harmelen for their valuable
feedback and the amount of freedom I was granted to proceed in the direction
I deemed right.

• Jonathan Schmitt for completing the first proof based on my translation, and
for providing 24/7 support, ideas and feedback on KIV and other subjects.

• Michael Balser for his help and insights on the formal semantics and KIV.

• The other people of the Protocure project for valuable discussions and ideas.

• Sebastiaan Spijker for sharing his knowledge and time on graphical design.

• José Hooijer for her input on medical matters, and her general loving support.

v

vi

TABLE OF CONTENTS

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Formal verification . 1
1.2 Protocure . 1
1.3 Problem statement . 2
1.4 Structure . 2

2 Goals in formal verification: an overview 3
2.1 Goals and formal verification . 3
2.2 The Goal model . 4

2.2.1 The observer . 4
2.2.2 Related work . 5

2.3 Structured conversion . 6
2.3.1 The actual steps . 7

2.4 Conversion philosophy . 9

3 Reduction and Normalisation 11
3.1 Reduction . 11

3.1.1 Handling time annotations . 12
3.2 Normalisation . 13

3.2.1 The normal form . 14
3.2.2 Patterns . 14

3.3 Conclusion . 18

4 Formalisation 21
4.1 Definitions . 21
4.2 The Goal Definition Language . 23

4.2.1 Conditions and events . 25
4.2.2 The start of the period . 29
4.2.3 The end of the period . 29
4.2.4 Behaviours . 32

4.3 Patterns in GDL . 35
4.3.1 Pattern 1: Repetitive goal . 35
4.3.2 Pattern 2: Repetitive goal with explicit bounds 36
4.3.3 Pattern 3 and 4: Avoid during the period 37
4.3.4 Pattern 5: A should happen before B 38

4.4 Formalisation . 38
4.4.1 Example 1 . 39
4.4.2 Example 2 . 41
4.4.3 Example 3 . 41
4.4.4 Example 4 . 42

4.5 Conclusion . 42

vii

5 Attachment 43
5.1 Difficulties . 43
5.2 GDL-Asbru . 46
5.3 The attachment . 48

5.3.1 Example 1 . 48
5.3.2 Example 2 . 51
5.3.3 Example 3 . 51
5.3.4 Example 4 . 52

5.4 Conclusion . 54

6 Translation 55
6.1 Mechanical translation . 55
6.2 GDL to KIV . 55

6.2.1 Asbru in KIV . 58
6.2.2 Basic principles of the translation 58
6.2.3 Events, conditions and behaviours 61

6.3 Translation . 64
6.3.1 Example 1 . 64
6.3.2 Example 4 . 71

6.4 Optimisation . 73
6.5 Conlusion . 73

7 Conclusion 75
7.1 Quality of conversion . 75

7.1.1 Canonical form . 76
7.1.2 Ambiguities . 76
7.1.3 Correctness . 76
7.1.4 Traceability . 77
7.1.5 Reusability . 77
7.1.6 Variability . 78

7.2 Future work . 78

References 81

A GDL: XML Specification 83
A.1 Generic GDL . 83

A.1.1 The goal body . 83
A.1.2 Time groups . 83
A.1.3 Goals . 84
A.1.4 Conditions . 85
A.1.5 Events . 85

A.2 GDL-Asbru . 85
A.2.1 Conditions . 85
A.2.2 Events . 86

viii

B GDL: Presentation syntax 89
B.1 Generic GDL . 89
B.2 GDL-Asbru . 91

C GDL: Formal semantics 93
C.1 Generic GDL . 93

C.1.1 Goal body . 93
C.1.2 Period delimiters . 93
C.1.3 Behaviour . 93
C.1.4 Conditions . 94
C.1.5 Events . 95

C.2 GDL-Asbru . 96
C.2.1 Domain conditions . 96
C.2.2 Domain events . 96

ix

x

Chapter 1
Introduction
1.1 Formal verification

Formal verification techniques can be used to make sure that a system adheres to
specific formal requirements. Different methods are available to perform this task.
Among those methods are symbolic execution and model checking. However, to be
able to verify a system, goal are needed which the system should adhere to. Often
a list of natural language goals is available which can be used for the verification of
the system.

To use those natural language goals, a translation is required to the formalism of
the verification tool. For time related goals, this may be some form of temporal logic.
The main concern is to assure equivalence of the translation and the original. In
general this is a problem. When the domain expert and the expert on formal methods
are different persons, neither has sufficient knowledge to check this equivalence. A
method is required to assure equivalence also in these cases.

1.2 Protocure

The Protocure project uses formalisation techniques on medical guidelines to allow
formal verification of those guidelines[9][7]. In medical practice, guidelines are used
to set a standard for treatments and to make sure that patients receive the best
care for their specific situation: guidelines describe the way medical care should be
conducted. Since guidelines are frequently used, errors may result in many instances
of sub-optimal treatment. The Protocure project aims at finding techniques to
identify errors in order to improve medical care.

No fixed set of goals is present for guidelines. The goals that a specific guideline
should comply with may come from different sources, but are without exception in
natural language. The problem of equivalence of the formalisation and the original
is very real here: many of the sources assume extensive medical knowledge and at
the same time, the target formalism — temporal logic — is far beyond the compre-
hension of any doctor.

In earlier work by Van Gendt [3], it was already decided that an intermediate
representation was required to reduce the equivalence problem. The work has fo-
cused on using a specific element of Asbru — the formalisation language used in
Protocure to formalise guidelines — to this end. However, this Intention element
turned out to introduce problems of its own. It still required the medical expert to
be involved with a formal representation. Also, it turned out that due to lack of
formal semantics multiple interpretations of the same expression were in use. The
conclusion drawn by Van Gendt was that the Intention would at least need to be
changed in order to be suitable for the task.

1

Chapter 1. Introduction

1.3 Problem statement

To make sure that the effort put into the conversion task by the domain experts
(i.e. the medical expert) is directed entirely on the content and interpretation of the
goal, an easy-to-interpret representation should be used by this group throughout
the whole conversion. Additionally, to assure proper and reproducible conversion
results, the whole process should be split into smaller, well defined steps.

The process of formalising natural language goals in general, and for the Proto-
cure project specific, will be the subject of this thesis: “What steps are required,
and what representation is suitable to formalise natural language goals with the help
of a domain expert”. The goals of the conversion process itself are: work towards a
canonical form, identify an clarify ambiguities, provide correct translations, ensure
traceability, enable reusability, and reduce variability. These goal will be further
elaborated on page 6 of chapter 2.

1.4 Structure

Chapter 2 will provide an outline of the answer to the problem statement. This
chapter will also provide a detailed list of the requirements the whole conversion
process should adhere to. Chapter 3, 4, 5 and 6 will provide detailed information on
individual steps of the conversion. Throughout those chapters, four example goals
from the medical domain will be used to illustrate each step. Finally, chapter 7 will
evaluate the results, and test the outcome against the requirements.

The appendixes contain full specification of intermediate languages and their
semantics.

2

Chapter 2
Goals in formal verification: an overview
Formal verification of systems requires not only a formal model of the system, but
also one or more goals to verify. Two kinds of goals may be distinguished: general
structural goals (reachability of states, termination) and domain related goals. The
latter will be the subject of the following chapters.

Domain related goals may come from a domain expert or literature in the form
of a natural language description. Those natural language descriptions will - just
like the model itself - have to be formalised before they can be used for formal
verification. This chapter will point out the difficulties when doing so, and provide
a domain independent step-by-step description of the formalisation process.

2.1 Goals and formal verification

The main problem encountered when starting verification of goals for some formal
system, is the ambiguity of those goals when they are specified in natural language.
No matter what domain, or what source of the goals: there are always a lot of
implicit assumptions and interpretations that must be made explicit before they
can be used for formal verification. An ad-hoc method, in which the expert on the
formal system makes the translation by hand directly into the logic of the target
system, may work sometimes, but is error prone due to the obvious domain specific
choices and interpretations that have to be made.

Incorporating a domain expert in the conversion process seems to be a necessity,
however the gap between the natural language representation and the logic is far
to big to close without help. A structured method, understandable for the domain
expert and flexible enough for the formal methods expert seems to be required here.
The domain expert should only be looking at a (structured) natural language version
of the goal at hand, while the formal expert maintains a formal representation of
the goal that is so close to the natural language that no errors are introduced in the
mapping between those two. That way, at the end of the formalisation process both
experts can be assured that the final goal is significant in the domain, and that the
formal representation indeed means what it should mean.

To accommodate this process, both experts need some shared model of how goals
can be expressed. They can then talk about the goal in terms of this general model,
each falling back on their own representation of it for the details. In the next section
such a model is presented and explained. In section 2.3, a global overview is given
of the structured method to express a goal in terms of this model and how to use
this to finally reach the target logic. In the next chapters, the individual steps are
explained more thoroughly. Since all these steps are basically domain independent,
in this chapter they will be described as such.

3

Chapter 2. Goals in formal verification: an overview

2.2 The Goal model

There are some considerations where taken into account designing the shared goal
model.

1. Ease of interpretation The model must be easy to explain, so it can be
understood and interpreted with only little training. It should enable both
experts to reason about goals and discus these goals using a common structure
and vocabulary.

2. Expressible The chosen goal model should have a simple mapping to both
natural language and to a formal representation. The gap between the domain
experts and experts in formal verification should naturally be bridged by the
model.

3. Expressive power The model must be powerful enough to express a large
variety of goals.

4. Translatable The model should be easy to translate into many target for-
malisms.

2.2.1 The observer

The chosen common goal model can best be understood in terms of an external
observer. The observer monitors the execution of the process model that needs to
be verified and continuously compares the observed behaviour to what is required
by the goal. If behaviour is observed that does not adhere to the goal, the model
is considered inconsistent with the goal: the verification fails. The actual job of the
observer starts when some start event is observed. The observation of this start
event only ‘counts’ when the circumstances are right: the state of the model should
meet some conditions that are also specified in the goal description. After a valid
start event has been observed, the model should strictly adhere to some prescribed
behaviour until the observer sees some end event. A goal is thus expressed in terms
of a start event, a pre-condition for this event, an end event, and some desired
behaviour for in between.

time

Right circumstances
+ some start event Some end event

Desired observations

Observed process

Figure 2.1: Shared goal model

Figure 2.1 illustrates this model. The blue line denotes the execution of the
model that is being observed. After the start event has been observed under the

4

2.2. The Goal model

right circumstances, the red bar shows that the model should adhere strictly to the
desired behaviour. The red bar stops at the moment the end event has occurred.
From that point on the behaviour is no longer important: left and right of the event
arrows the behaviour of the model is not relevant.

The simple nature of the common goal model follows from the first consideration.
Despite this simple nature, the specification of the desired behaviour between the
start and end event allows for sufficiently expressive goal descriptions. Since the
model can easily be written in terms of a state machine, translation into any target
formalism should be relatively simple: as long as a state machine can be modelled,
the common goal model can also be expressed. The next chapters show that the
common goal model also maps naturally to natural language — with that it does
indeed brigde the gap between the domain expert and the formal systems expert.

2.2.2 Related work

Several others have worked on goal models in relation to the medical domain. The
first work of relevance is the intention found in Asbru. Shahar introduces the inten-
tion as a high level goal associated with formalised guidelines[11]. The second work
of interest is the work of John Fox, who has created an ontology of goals based on
goals in breast cancer treatment[2].

Both works are an effort to find a vocabulary to express goals. However, the
reasons to do so differ. Below both methods are described and evaluated with
respect to the goal model.

Asbru Intention

Asbru’s intention is part of the Asbru specification. Asbru uses a plan-hierarchy
to formalise medical guidelines. An intention can be added to plans to specify the
intended outcome of the plan (and its sub-plans). In the case of Asbru, the intention
was originally meant to aid the plan selection process in a real-time environment. By
adding information about the intentions and effects of plans, it should be possible
to reuse plans in other environments.

For the intention, a tripled of words is used to describe the behaviour:
achieve
avoid

maintain

×
{
intermediate

overall

}
×

{
action
state

}

It starts with a verb, followed by a temporal specification relative to the plan:
goals using intermediate are applicable during the execution of the plan. The overall
keyword denotes the end of the plan. Finally, the behaviour is either about a state or
about an action. For example achieve overall state means that some state (condition)
must be true at the end of the plan.

Although originally not designed for that reason, an attempt was made by Van
Gendt [3] to express verification goals using the intention. For several reasons this
attempt failed. Some of the problems where related to difficulties associating the
concepts in the goal with the concepts in the process model. Since this problem

5

Chapter 2. Goals in formal verification: an overview

is to a large extend independent of the chosen language, this demonstrates that
apart from a vocabulary, also a methodology is needed. Another type of problem
however, were problems with the semantics of the intention. First of all, no formal
semantics have been defined. Only some examples are available to demonstrate the
use of the intention. Therefore, the semantics must follow from the structure and
the words used. Unfortunately, the rigid nature of the triplets do not allow a suitable
assignment of meaning according to the natural meaning of the words. Therefore,
several combinations have been assigned non-intuitive meanings. Additionally, in
the body of the intention, extra time annotations can be used. Although in theory
this should enrich the expressive power, in practice a uniform interpretation has
become very difficult to provide.

Based on these experiences, the conclusion was drawn that a simple, clear con-
ceptual goal model is required for a successful translation. Additionally, a formal
expression language is required which is based on this model, and of which the mean-
ing stays very close to the natural meaning of the words used. The formal language
that comes with the goal model of this thesis therefore contains specific expressions
as keywords, exactly tailored to match the behaviour they describe.

Goal Ontology

In order to understand the requirements for modelling and managing clinical goals
in breast cancer care, John Fox has studied CREDO, a decision support system for
cancer care. The aim of formalising the goals in that system is to be able to recover
from failed goals and clinical intervention.

The resulting ontology discriminates between knowledge goals and action goals.
The knowledge goals are subdivided in information acquisition and decisions between
alternative hypotheses. Knowledge goal are about handling information and deriving
information by reasoning. Therefore verbs like classify and predict are found here.
The action goals are about achieving some state of the world and enacting tasks.
This is about interaction with the world. Verbs like communicate and investigate
can be found in this category.

The chosen subdivision makes perfects sense in the context of internal goals for
a decision support system. However, for verification tasks the separation turns out
to be artificial, and even difficult to handle. Concepts like ‘communicate’ may have
a very well defined meaning in the context of the given system, however outside that
system, is has no natural formal meaning by itself.

The last example shows that a system independent expression language cannot
contain any system dependent concepts. Again the goal model satisfies this require-
ment by providing a framework using universal, abstract concepts like event and
condition. Only when the goal is applied to some specific model, the abstract events
and conditions will be turned into concrete elements from the process model.

2.3 Structured conversion

Now that with the goal model, the domain expert and the expert in formal verifica-
tion has a shared frame of reference, the next step is to develop a structured, step

6

2.3. Structured conversion

Goal in any form

Explicit description of desired behavior

Goals from different sources

Formal GoalStructured Goal using goal model

Structured Goal using goal model in
terms of the process

Formal Goal in terms of the process

Formal Goal in terms of the process

Natural language

Formal oal efinition anguageG D L

Final formal language

1

2
3

4

5

Figure 2.2: Life-cycle of a goal

by step conversion process. The main requirements of such a process are:

i. To direct the conversion process and for ease of interpretation, work towards
canonical forms of the goal.

ii. Identify and clarify all assumptions and ambiguities present in the original
goal.

iii. Ensure correctness of every change to the goal: the domain expert should be
able to validate every change to ensure its validity for the domain.

iv. Ensure traceability. The conversion must be completely reproducible by means
of the intermediate results and the documentation.

v. Enable reusability of work at different stages. Maintain generality for as long
as possible.

vi. Reduce variability of the conversion result.

To achieve those goals, every domain goal is transformed and translated in five
separate steps. This yields a life-cycle for goals which is depicted in figure 2.2.
The five numbered arrows correspond to those five conversion steps. The steps are
explained in the next section.

2.3.1 The actual steps

To illustrate the initial steps below, an example from the medical domain is provided
for clarity. The formal part has been left out in this stage. More detailed examples
and more details on the individual steps, are given in the next chapters.

7

Chapter 2. Goals in formal verification: an overview

Example:
“Percentage of people who had a Cholesterol or HDL-cholesterol measure-
ment during the last 12 months.”

Reduction #1 Independently of the source of the goal, the first step is to
make sure that the desired behaviour is explicitly described. This step aims at
removing non essential information from the original formulation. (E.g. In the
medical domain, indicators are goals that are used to measure quality of treatment
afterwards. In some cases they don’t immediately describe the desired behaviour,
but merely specify how it should be measured: “The percentage of patients that
during the last year”. The first step extracts the unit of quality from this notation
by explicitly writing down what needs to be observed during the diagnoses and
treatment.) The first step is called the reduction step, since the goal is reduced to
a purely descriptive form.

“People should have a Cholesterol or HDL-cholesterol measurement every
12 months.”

Normalisation #2 After the reduction, the goal is rewritten in terms of be-
haviour that should be adhered to between some start and some end event: the goal
model. The goal is transformed into a normal form here, hence the name ‘normal-
isation step’. This is also the step in which the majority of the ambiguities and
implicit assumptions are taken care of. After this step, the temporal relations of the
resulting goal should be clear and only be interpretable in one way. It is important
that the reduction and the normalisation steps are performed independently of any
specific model to verify. It should just be another way of writing down the original
goal. By not making model specific adjustments, the normalised goal may be reused
for verification of more than one model.

G[For people], S[at earliest 11 months after a cholesterol or
HDL-cholesterol measurement], E[and at latest 13 months after that
measurement], B[another cholesterol or HDL-cholesterol measurement
must be performed once]

The groups between brackets correspond to the elements of the goal model. For
more information, refer to page 14.

Formalisation #3 The normalised form is now being formalised. This step to
GDL – the formal Goal Definition Language – is small and easy: GDL is explicitly
designed to reflect the goal model and since the normalised natural language form is
also designed to do that, the transition is straight forward. For an example of GDL
refer to page 23.

Attachment #4 The (model independent) normalisation/formalisation is used
in a collaborative effort of both experts to rewrite terms found in the original struc-
tured goal, to terms found in the model under investigation. Since the origin of
the goals is undefined, there is no way to guarantee that the vocabulary used is
the same. This mapping is a creative process requiring both the knowledge about
the formalised model, and the domain knowledge of the expert. In this stage, the

8

2.4. Conversion philosophy

goal actually becomes attached to a specific model. Essential to this step is that all
changes are reflected both in the GDL version as well as in the structured natural
language version. That way, both experts are talking about the same (adjusted)
goal all the time, and changes proposed by the expert in formal verification, can be
evaluated by the domain expert.

Translation #5 When a final version of the goal has been found, the remaining
task is to translate it from GDL to the target formalisation. This should be a
mechanical step to prevent undesired additional changes to the goal (which are not
evaluated by the domain expert).

2.4 Conversion philosophy

The steps described above already show that the conversion process does not neces-
sarily preserve the exact goal. Especially during the attachment phase, the goal is
adjusted to fit on to the model under investigation. Whether or not this is acceptable
depends on the goal.

The aim of formal verification is to find errors in a system. If formal requirements
are available, then conversion should be possible without significant changes. If not,
less precise sources such as natural language descriptions must be used. In the latter
case, the conversion process may yield several goals which are different from the
original but which still are significant and important goals for the domain. Given
the choice between totally discarding a goal, or using an adjusted, but relevant
version of it, the latter seems preferable.

9

Chapter 2. Goals in formal verification: an overview

10

Chapter 3
Reduction and Normalisation
In this chapter, the reduction and normalisation step, which were introduced in
the previous chapter, are explained in detail. Although all steps are in principle
applicable to any domain, some details are more easily explained using a domain
specific perspective. Therefore, from this chapter on, the general view is abandoned
to be able to provide background information on conversion in the medical domain,
the subject of this thesis. Four examples of medical indicators will serve to illustrate
the difficulties and techniques. The examples are a selection of real-world goals
which will highlight different aspects of the conversion process.

Original - Examples

1. “Percentage of people who had a Cholesterol or HDL-cholesterol mea-
surement during the last 12 months.”

2. “Percentage of people with diabetes who have had one or more severe
hypoglycaemia during the last 12 months.”

3. “Percentage of women with breast cancer who had local recurrence
within 5 years after breast-conserving surgery.”

4. “The possibility of breast reconstruction should be discussed with all
patients prior to mastectomy.”

3.1 Reduction

As explained in the previous chapter, the reduction step aims at rewriting the original
goal to a form which explicitly describes the desired outcome. It extracts the quality
aspect captured by the goal and removes non essential annotations.

An example of such non essential annotations can be found in medical indicators.
One style of writing indicators is by describing exactly how the quality should be
measured: this style can be found in the first three example indicators. The extra
time annotation is the main source of difficulties during the reduction phase. Con-
sider example number 2. After finding out that hypoglycaemia is not a good thing,
it may be tempting to rewrite the goal to: “For people with diabetes, hypoglycaemia
should be avoided during the next year”. However, if adhering to the guideline would
cause all diabetes patients to have hypoglycaemia after 366 days, the rewritten goal
would be satisfied. Obviously, this is not what the original indicator was aiming at,
since in that case it will fail the next year. General rules for handling such time
annotations will be provided below.

11

Chapter 3. Reduction and Normalisation

3.1.1 Handling time annotations

When comparing the first and the second indicator on page 11, there seems to be a
high level of resemblance. Both mention 12 months and something that should or
should not have happened. There is a crucial difference though, that becomes clear
when we try to determine the exact quality aspect captured by these two indicators.

The normal use of an indicator is that — for the purposes of quality measurement
in medical practice — once a year, the indicator is evaluated for every patient that
was treated. This procedure is repeated every year. When Indicator 1 is measured
every year, it tries to enforce that the Cholesterol levels should be measured every
12 months. Rewriting that as a goal yields: “Every twelve months, Cholesterol must
be measured”.

The second indicator on the other hand, tries to achieve the opposite. It checks
that hypoglycaemia has not occurred during that year, and by repetition, every
subsequent year. Rewriting that to a goal yields: “hypoglycaemia should never
occur”. The time annotation has vanished in this case since it has no medical
significance. It was only there to accommodate the statistical process.

In the third indicator, there also is a time annotation present. However, this time
annotation has an explicit reference to a point in time related to the treatment:
the moment of the breast-conserving surgery. Given that this time annotation is
specifically related to the treatment, it cannot be discarded as ‘a time annotation
supporting the process of measurement’. But the fact that the indicator refers
to a percentage (over some time) implies that another time annotation is needed.
For demonstration purposes, we may augment the third indicator to “Percentage
of women with breast cancer who had local recurrence within 5 years after breast-
conserving surgery, during the last 12 months”.

Original Goal

Percentage
or Time-range?

Something should

happen

Something should not

happen

A Condition must be

true/false whole time

Yes

Any time-range

concerning the

measurement must be

removed.

Time-range

concerning

measurement must be

included in the goal.

No changes required

No

Figure 3.1: Decision table for time annotations

Local recurrence is not desired. Therefore we have situation again — just like
in the second example indicator — in which something should never happen. Using
the augmented version of the indicator it becomes clear the the previously added
time annotation can be discarded. A simple check confirms this: removing the

12

3.2. Normalisation

second time annotation does not affect quality aspect of the indicator. However,
removing the first does change the meaning. Figure 3.1 provides guidance for goals
containing time annotations. Following the flow-chart, the third indicator leads to
“Any time-range concerning the measurement must be removed”. As shown before,
caution must be taken when dealing with time groups: only time ranges related to
the measurement should be removed.

The fourth example is trivial with respect to the reduction step: there are no
time annotations to consider, nor are there any other superfluous elements1 in the
original goal. The correct reductions of all the examples are given below:

Reduction - Examples

1. “People should have a Cholesterol or HDL-cholesterol measurement
every 12 months.”

2. “For people with diabetes, hypoglycaemia should not occur.”

3. “For women with breast cancer, local recurrence within 5 year after
breast-conserving surgery should not occur.”

4. “The possibility of breast reconstruction should be discussed with all
patients prior to mastectomy.”

3.2 Normalisation

After the superfluous (time) annotations have been removed and the goals have
been reduced to their pure form, the next step will be to rewrite the goal into a
structured form. An essential part of this rewrite is to define the exact domain
of the goal along two scales: first, the exact group of patients the goal applies to.
Second, the exact periods in time when the goal must hold. Determination of these
domains corresponds to rewriting the goal in terms of the goal model introduced in
chapter 2. (See figure 2.1, on page 4 for details).

The group of patients to which the goal applies, maps to ‘the right circumstances’
shown in the picture: the goal should only hold for those parts of the plan that are
applicable to that same group of patients. The exact period during which the goal
should hold translates to the start and end event.

After the domain has been specified, the next step in the normalisation process
is to write the goal in the structured form. This form is introduced in the next
section.

During the normalisation, many assumptions and ambiguities are made explicit.
Generally this requires domain knowledge. Therefore, assistance of a medical doctor
was required to normalise example 1 – 4.

1Until now, no superfluous elements other than the percentage/time annotation
combination have been found. However, there may be other classes of those elements;
either in the medical domain, or in any other.

13

Chapter 3. Reduction and Normalisation

3.2.1 The normal form

The normal form consist of a couple of elements, in a fixed order, that coincide
with the elements of the goal model. Since it is essential that the goal is written in
understandable natural language, linguistic adjustments may be required to embed
the groups in a readable sentence. Coloured, labelled brackets are added to the
individual groups for easy identification. The general format is structured as shown
below. The structure presented here may be nested as a whole in the Behaviour field,
thereby allowing the expression of more complex, nested goals, without sacrificing
the simple nature of the goal model.

G[Group] S[Time-range Start] E[Time-range End] B[Desired Behaviour]

In the next section the different goals from the examples are rewritten into this
form. Examples for the use of the structured form can be found there.

3.2.2 Patterns

Viewing a goal in term of the goal model is not always easy. It requires that one
thinks of a sequence of events rather than just any behaviour. To clarify this way
of thinking, the reduced examples of page 3.1.1 will be discussed here. From the
individual formats, some general patterns will be derived that can help to transform
others. It is impossible to show every conceivable pattern. However, an effort will
be made to provide enough ground to be able to apply the same technique to other
reductions.

Example 1

“People should have a Cholesterol or HDL-cholesterol measurement every
12 months.”

Example 1 shows a typical repetitive goal. In terms of the goal model, the start
event is the measurement itself. The end event is defined as 12 months after that
measurement — the start event. The desired behaviour is that during this period,
another measurement is taken. It is repetitive in the sense that every time the desired
behaviour is observed, it is at the same time the start event of another observation.
Pattern 1 shows the pattern for a repetitive goal.

Right patient group
+ repetitive event

Some time after repetitive event

Observe repetitive event at least once

Pattern 1: Repetitive goal

14

3.2. Normalisation

The choice of the end point needs some further consideration. It concerns the
interpretation of ‘every 12 months’. The first option is to read ‘at least once in
every period of twelve months’ (literally translated). The other possibility is to read
‘exactly once every twelve months’. This is exactly the kind of ambiguity that has
to be eliminated!

Modelling the first interpretation is straight forward according to pattern 1. The
time displacement of the end event is 12 months, just like in the goal from the
reduction. The second interpretation is somewhat more tricky. Formalising ‘exactly
once every period of twelve months’ would mean that the goal is broken if the second
measurement takes place after 367 days. For some goals (like checking some critical
system within some period) this behaviour is desired, but for many medical purposes,
a 367 day interval would also be fine.

The solution to this problem is to provide a precise interval in which the obser-
vation should occur. For example one, this could be ‘exactly once, occurring after
at least 11 months and at most 13 months’. The exact boundaries of the interval
depend on the property. This type is illustrated by the pattern of pattern 2

Right patient group
+ repetitive event

Upperbound - after repetitive event

Do not observe repetitive event Obs. once

Lowerbound - after repetitive event

Pattern 2: Repetitive goal with explicit bounds

Note that the first interpretation is also vulnerable to the ‘367 days’ problem.
This can solved by stretching the period to for example 13 months. What is reason-
able here again depends on the goal.

With every repetitive goal, there should be some kind of boot-strapping. If only
the repetition is defined, it may occur that the event will never happen and this will
not cause the goal to fail (since a goal can only fail after the start event has been
observed). There should be an additional specification that requires the repetitive
event to occur at least once. The form of this extra goal depends entirely on the
type of goal, but it is to be expected that it will usually resemble pattern 1. The
main difference will be that the start event will have to be instantiated by some
initial event — usually early in the process. The length of the observation period
may be same as that of the repetition interval of the main goal, but — depending
on the goal — it may also be much shorter.

The final normalisation of example 1 is according to pattern 2, with a bootstrap
goal according to (adjusted) pattern 1:

15

Chapter 3. Reduction and Normalisation

Normalization - Example 1

G[For people],S[from the start of the diabetes care], E[within 12 months],
B[cholesterol or HDL-cholesterol must be measured.]

G[For people],S[at earliest 11 months after a cholesterol or HDL-
cholesterol measurement], E[and at latest 13 months after that measure-
ment], B[another cholesterol or HDL-cholesterol measurement must be
performed once.]

Notes:

1 Normalization At least once during the treatment, cholesterol should
be measured, but no later than 12 months after the start of the treat-
ment.

2 Normalization ‘Every year’ has been formalized into ‘exclusively
within 11 to 13 months’. Medical Expert: The relevance of a choles-
terol measurement is limited, so more than one measurement a year
should be avoided out of cost considerations.

Example 2

“For people with diabetes, hypoglycaemia should not occur.”

The second example aims at preventing something from happening. Pattern
3 depicts this behaviour. The difficulty here is to determine the start and end

Right patient group
+ start event

Do not observe event/condition

end event

Pattern 3: Avoid during the period

events. The question is how to translate ‘never’ (should not occur). The indicator
was written with a medical setting in mind: therefore we may consider the goal
applicable during the time the hospital is responsible for the care of this patient.
To be precise: the period between the start and end of the care. The rest of the
normalisation is straight forward:

Normalization - Example 2

G[For people with diabetes],S[between the start of the diabetes care],
E[and the end of the care], B[hypoglycaemia should not occur].

16

3.2. Normalisation

Example 3

“For women with breast cancer, local recurrence within 5 year after breast-
conserving surgery should not occur.”

The third goal maps to pattern 4. This pattern is similar to pattern 3, with the

Right patient group
+ start event

Do not observe event/condition

Some time after start initial event

Pattern 4: Avoid during the period, relative

difference that the end event is specified in terms of some time after the start event.
This pattern is easy recognisable in the reduced version of the goal. The different
components of the normalised form can almost be taken literally from the text. Note
the explicit specification of ‘after successful completion of breast-conserving surgery’.
This refines the reference to this procedure in the original. A note is used to provide
enough background to interpret this expression correctly.

Normalization - Example 3

G[For women with breast-cancer],S[after successful completion of breast-
conserving surgery] E[until 5 years thereafter], B[local recurrence should
not occur].

Notes:

1 Normalization ‘Successful completion’, is evaluated immediately after
the procedure and reflects the surgeons opinion concerning the removal
of the cancer. The long term success is not taken into account here.

Example 4

“The possibility of breast reconstruction should be discussed with all pa-
tients prior to mastectomy.”

The last example provide a whole new kind of goal. It requires that the patient
is informed before surgery is started. Essential to realise here is that there is no
requirement that surgery will eventually take place. Seen in terms of the common
goal model, this means that if some event B is observed, another event A must
already have been observed. Pattern 5 shows that. Although it is natural that the

17

Chapter 3. Reduction and Normalisation

Observe event () (at least) onceA

Right patient group
+ start event

end event ()B

Pattern 5: A should happen before B

goal can only fail once event B has happened — there is no way to be sure that
in the future A will indeed not happen before the eventual occurrence of B — for
clarity, it is recommended to explicitly specify that B is not required to happen.

The start event is not relevant for the ordering itself. Since no other clues are
given, the start of the care is taken as start event. Taking all this into account,
normalising example 4 will then result in:

Normalization - Example 4

G[For women with breast-cancer],S[after start of the medical care] but
E[before commencing mastectomy], B[the possibility of breast reconstruc-
tion should have been discussed with the patient].

Notes:

1 Normalization ‘· · · with all patients · · · ’, has been rewritten to the
group specification: ‘women with breast-cancer’: the goal comes from a
document specifically concerning women with breast-cancer.

2 Normalization Mastectomy is not required to happen. Only if it
happens, the patient should have been informed.

3 Normalization Since there is no harm in informing the patient more
than once, no restriction has been added.

3.3 Conclusion

Several of the goals that were set for the conversion process in section 2.3 have
been addressed. The reduction and the normalisation are still completely related
to the natural language version of the goal. This makes it easy for the domain
expert to verify correctness of any changes made to the goal with respect to the
domain. Starting the process with the reduction also adds to this: it eliminates
distracting, superfluous elements from the goal in a controlled way. The resulting
purely descriptive from is — although not yet structured — the first step towards a
canonical expression of the goal. (i, iii, iv on page 7).

The normalisation forces both experts to think about the goal in terms of start,
end, and what lies in between. Rethinking a goal like this brings up questions about
the exact meaning of the goal. By answering those questions, ambiguities are solved

18

3.3. Conclusion

automatically. Proper documentation in this step ensures traceability. The final
result is the goal in a canonical form: the structured version of the goal model (i, ii,
vi). Reusability is not yet an important issue in these steps (v).

19

Chapter 3. Reduction and Normalisation

20

Chapter 4
Formalisation
The formalisation step which is described in this chapter, will pave the road towards
the attachment phase. After the formalisation, two equivalent representations of
the same goal are available. One in (structured) natural language, the other in a
formal expression. By having those, the formal methods expert and domain expert
can discuss the same goal using their own representations.

The formal expression of the goal will be provided by GDL, the Goal Definition
Language. This new language is specifically designed to reflect the structure of the
goal model and will therefore also stay very close to the structured version. GDL is
split into two parts:

• A general, domain independent part, Generic GDL, that represents the goal
model itself.

• A task specific extension to GDL that defines the exact conditions and events
that can be used. The extension is heavily dependent on the domain and on
the formalisation language of the process. For Protocure, these processes are
medical guideline expressed in Asbru. Therefore, the GDL-Asbru extension of
GDL has been developed.

This chapter has been divided in four sections. Section 4.1 will provide a founda-
tion of definitions for later use. Section 4.2 discusses the elements of Generic GDL
together with their semantics, followed by a section that ties the patterns of chapter
3 to GDL. Using all this, in section 4.4 the examples of the previous chapter will be
taken through the formalisation. The formalisation is still independent of a specific
process model. Therefore, GDL-Asbru will be not be discussed until chapter 5.

4.1 Definitions

GDL expressions are evaluated on linear sequences of states. Such a sequences of
states is referred to as an interval.

definition 1 (Interval I) Let n̄ ∈ N. An interval

I = (σ0, . . . , σn̄)

consists of

• an intial state σ0, and

• a finite or infinite and possibly empty sequence of transitions

(σi−1, σi)
n̄
i=1

|I| := n̄ is defined as the length of an interval I. The interval with |I| = 0,
only contains the initial state σ0.

21

Chapter 4. Formalisation

To accommodate manipulation of intervals, a set of additional functions has been
defined.

definition 2 (Auxiliary definitions for Intervals)

I(i) :=

{
σi, if i 6 n̄
σn̄, otherwise

I|i :=

{
(σi, . . .), if i 6 n̄
(σn̄), otherwise

I|i :=

{
(σ0, . . . , σi), if i 6 n̄
(σ0, . . . , σn̄), otherwise

I|−i :=

{
(σ0, . . . , σn̄−i), if i 6 n̄
(σ0), otherwise

I|ji := (I|j)i

I|−j
i := (I|−j)i

I(i) selectes the ith state of an interval. I|i takes a portion of I, starting with
σi. I|i takes a portion, starting with state 0 and ending with σi. I|−i removes the
last i states of the interval. I|ji takes a subinterval of I from σi to σj. In the same
way I|−j

i returns the subinterval starting with i, and the last j states removed.

definition 3 (Counting of events) The following function

b.c.,. : E× I× L 7→ N

takes an event, an interval and a lower bound, and returns a number such
that:

becI,l =

0 if |I| = 0 ∨ |I| = l − 1
becI|−1,l if |I| 6= 0 ∧ I, l, 0 6|=e e

(becI|−1,l) + 1 if |I| 6= 0 ∧ I, l, 0 |=e e

Definition 3 provides a function which returns the number of states in interval I|l
in which the event occurs. The details of events and the interpretation of I, l, 0 |=e e
is discussed in detail in section 4.2.1 and further. For now, it is sufficient to read
I, l, 0 |=e e as ‘Event e has occurred during the transition to the last state of I’.

22

4.2. The Goal Definition Language

definition 4 (Definition of time) Let Duration(σi) be the duration of σi.
The following function

‖.‖ : I 7→ T

takes an interval and returns the duration of that interval:

‖I‖ :=

|I|∑
i=0

Duration(I(i))

Finally, definition 4 provides a way to talk about durations of intervals, given
the duration of individual states. T is assumed to be a standardised unit of time.

4.2 The Goal Definition Language

GDL is the formal counterpart of the structured natural language version. There
are two ways to write GDL:

1. Machine readable XML of which the syntax can be found in appendix A.

2. A presentation syntax for use in documents (Appendix B).

The semantics have been defined on the presentation syntax, and that is what this
section will be about. The complete definition of semantics can be found in appendix
C. As the elements and structure of the presentation syntax are also present in the
XML version, there is a deterministic translation possible between those two. For
orientation, figure 4.1 shows a full example of GDL (using events from the GDL-
Asbru extension).

Goal Maintain-example
Precondition

always-true

Time-specification
From

Transition treatment enter active
+7→ 1 day

Until
Transition treatment leave active

Maintain-during-period
Param Lower-Blood-press < 90

Figure 4.1: Full example of a goal using maintain-during-period.

As the example shows, three major parts can be distinguished. The first part is
the precondition, which corresponds to the group (G) part of the structured repre-
sentation and which — as shown here — is empty:

23

Chapter 4. Formalisation

Normalization - Full example

G[],S[From one day after the start of the treatment] E[until the moment
the treatment is discontinued], B[the blood pressure should remain below
90].

The second part is the time-specification. This specification defines the period
in which the behaviour should hold. It always starts with a from, followed by an
event (or a combination of events), to define the start of the period. The from part
corresponds with the start (S) section in the structured version. For the end of the
period, there is more than one possibility: in the example a simple until is chosen
but amongst others, it is also possible to specify a duration. Obviously, this part
corresponds as a whole to the end section (E).

The third part describes the actual behaviour. Maintain-during-period is one
of five behaviours that have been defined. Section 4.2.4 goes into detail about
the different possbilities here. If some behaviour is not covered in the current GDL
specification, it can easily be added without breaking semantics of existing elements.
The behaviour part of GDL is connected to the behaviour (B) part of the structured
natural language version.

I |= Goal A1:Name

Precondition
P1:Condition

Time-specification
From P2:Event

P3:Time−delimiter

P4:Behaviour

iff ∀ i, j > i . I|i |=c P1:Condition ∧ I|i, 0, 0 |=e P2:Event

∧ I, i, j |=p P3:Period−delimiter

∧ q∃ i < k < j . I, i, k |=p P3:Period−delimiter

⇒ I|j−1, i |=b P4:Behaviour

Table 4.1: Semantics of the goal body

Table 4.1 shows the definition of the semantics of the goal. A goal is true for
some interval I, if the predicate logic formula is true for that I. The formula itself is
built around an implication. The all-predicate actually defines an i, a possible index
of the starting state, and a j, a possible index of the state in which the end event
occurs. If the left-hand side manages to define two states σi and σj such that they
satisfy the precondition and the time-specification, then the right-hand side of the
implication describes the required behaviour over the interval between those states.

As table 4.1 shows the semantics are defined recursively: the formula contains
several |= operators that define the meaning of smaller language elements. To in-
crease expressiveness, and to be able to distinguish between language elements,

24

4.2. The Goal Definition Language

different versions of the |= operator are defined: |=c for conditions, |=e for events and
|=b for behaviours. Each will be discussed separately in the following sections.

Section 4.2.2, The start of the period, section 4.2.3, The end of the period and
section 4.2.4, Behaviours will go into detail on the different part of the GDL seman-
tics. The next section will start by a description of events and conditions and how
they relate to intervals.

4.2.1 Conditions and events

Before continuing with the discussion of the semantics of the goal model itself, the
most basic elements of Generic GDL will be discussed: (abstract) conditions and
events. How these relate to a given interval is the subject of this section.

Conditions

Conditions in GDL apply to a single state of a trace. For any state, the condition
is either true, or false. However, for reasons of uniformity, conditions are primarily
given semantics in relation to an interval.

I |=c P1:condition

The expression above means that condition P1 is true in the last state of I. Figure
4.2 illustrates an interval which satisfies the expression. Writing I|i |=c Condition
can be used to express: “the condition is true in state σi”.

I:

1:condition = true

Figure 4.2: An interval which make I |=c P1 true.

Generic GDL allows any boolean combination of conditions. The following op-
erators are supported: (), not, and, or and xor. Section C.1.4 on page 94 provides
the semantics for each of those.

For individual atomic conditions (of which the majority is defined in GDL ex-
tensions), the semantics are referred back again to the semantics of this condition
in relation to a single state. State I(|I|) yields the last state of I:

I |=c P1:Atomic−condition

iff I(|I|) |= P1:Atomic−condition

As an example the (trivial) semantics of the always-true condition are provided
here (note the σ instead of I):

σ |= always-true
iff true

25

Chapter 4. Formalisation

Atomic events

Atomic events occur between transitions from one state to the other. As a conse-
quence, an event — in contrast with a state — does not have a duration.

I |= P1:Atomic−event

The basic notation given here is both in writing and in meaning similar to that
of conditions: I |=e Event means that the event occurred during the transition to

the last state of I. (Figure 4.3.) Also here, I|i |=e event can be used to test whether
or not the event occurred in the transition to state σi

I:

1:atomic-event

Figure 4.3: An interval which makes I |= P1:Atomic−event true.

For complex expressions with atomic events, and for another class of events —
the delayed events — more information is required. This is solved by providing an
extended notation for events in general:

I, l, s |=e P1:event

The value of l represents the lower bound, s stands for shift. The exact meaning
of the lower bound depends on the type of event and will be discussed separately
form each class of events. The shift does not influence the semantics of the atomic
event and therefore the discussion about the meaning of s will be postponed shortly
until delayed events are treated in detail. Generally speaking, this notation for the
semantics of events can best be read as “I models P1 taking the lower bound and
the shift into account”.

For atomic events, the lower bound limits the applicability of the operator to a
specific range of states. The event only registers when it occurs during the transition
to the last state with l < |I|. Figure 4.4 shows an interval which just satisfies the
event. The shaded area marks the state left of the lower bound. As can be seen, if
l would have been increased by one, the interval would not satisfy the event.

I:

1:atomic-event

l=|I|-1

Figure 4.4: An interval which makes I, l, ∗ |=e P1:Atomic−event true.

As s is not relevant for atomic events, ‘I, l, ∗ |=e Atomic-event ’ can be read as:
“The event occurred during the transition to the last state of I, and it occurred after
the state transition to σl”. This is expressed by the following semantics definition:

26

4.2. The Goal Definition Language

I, l, s |=e P1:Atomic−event

iff l < |I| ∧ I |= P1:Atomic−event

The delayed event

Apart from specifying atomic events, it is useful to be able to specify a delay after
some event as the start- or end event. Although by itself the delay is strictly not

an event, the expiring of the delay is. The ‘
+7−→ ’ symbol is used to specify such a

delay:

I, l, s |=e P1:atomic−event
+7−→ A1:Delay

The shift value s comes into play here. The value of s ∈ N determines in which
state of I (counted from the end) the delay should expire. Figure 4.5 shows the
default situation, when a delayed event is applied with s = 0. For delayed events, l
determines that the event only holds when l 6 |I|.

I:

1:atomic-event

Delay

l=7

3 4 5 76

Figure 4.5: I, 7, 0 |=e P1:event
+7−→ A1:Delay

‘I, 7, 0 |=e Event
+7−→ Delay’ can be read as: “The delay after the occurrence of

the event expires during the last state but not earlier than state σl (i.e. state 7)”.
For a value of s = 1 the situation changes slightly:

I:

1:atomic-event

Delay

s =1

l=6

3 4 5 76

Figure 4.6: I, 6, 1 |=e P1:event
+7−→ A1:Delay

As figure 4.6 shows, ‘I, 6, 1 |=e Event
+7−→ Delay’ can be read as: “The delay

after the occurrence of the event expires during the second last state of I but not
earlier than state σl (i.e. state 6)”.

The formal definition of the delayed event is as follows:

I, l, s |= P1:Atomic−event
+7−→ A1:Delay

iff |I| − s > l ∧ ∃ k . (I|k |= P1) ∧ ‖I−(s+1)
k ‖ < A1 ≤ ‖I−s

k ‖

Informally it states, that if the length of I minus s (|I| − s, the target state) is
greater or equal to the lower bound l, and if a state k exists in which event P1 just
occurred, and if the delay after this event is exceeded in the target state, but not in
the state before that, then I, l, s indeed models the delayed event.

27

Chapter 4. Formalisation

The bounded delayed event

As special version of the delayed event is the bounded delayed event : ‘q +−→ ’. This
is where l is even more restrictive. For the regular version of the delayed event, the
only criterion is that the delay expires during the last state (for s = 0) and that the
lower bound lies before that state. However, in some cases it is useful to be able to
specify that the event itself must also lie after the lower bound. If the event would
occur before the lower bound, it would never make the expression true: not even
when the delay would expire in the right state. Figure 4.7 shows an interval with a
bound. The event falls just outside of the shaded area and is therefore valid. Would
l = 7 be used like in figure 4.5, it would disqualify the interval.

I:

1:atomic-event

Delay

3 4 5 76

l=4

Figure 4.7: I, 4, 0 |=e P1:event q +−→ A1:Delay

The formal semantics of the bounded delay are very similar to that of the regular
version, except for the more restrictive bounds check. The functions of the shift (s)
remains unchanged:

I, l, s |= P1:Atomic−event q +−→ A1

iff ∃ k > i . (I|k |= P1:Atomic−event) ∧ ‖I−(l+1)
k ‖ < A1 ≤ ‖I−l

k ‖

The Generic GDL notation does not allow explicit specification of the lower
bound. The the lower bound follows from the location the bounded delayed event
is used in. In the discussion of the main format of Generic GDL, for each location
the applicable lower bound will be mentioned.

Combinations of events

Atomic and delayed events can be combined into complex event combinations. The
available operators are: (), and, or and xor. Since the semantics of Not event is in
many cases not intuitive (e.g. ‘Observe Not event 3 times’), the not operator has
been left out. Combinations of events are evaluated individually per event and then
connected again with propositional logic:

I, l, s |= P1:Event and P2:Event

iff I, l, s |= P1:Event ∧ I, l, s |= P2:Event

Figure 4.8 shows an interval that satisfies a delayed event and an atomic event
combined by and. The delay must expire in the last state of I, and the second event
must occur during the transition to the last state.

28

4.2. The Goal Definition Language

2:atomic-event

I:

1:atomic-event

Delay

3 4 5 76

l=6

Figure 4.8: I, 6, 0 |=e P1:Atomic−event
+7−→ A1:Delay and P2:Atomic−event

4.2.2 The start of the period

The start of the period is — according to the goal model — determined by the
combination of the pre-condition and the start event1 (From ...). The pre-condition
must be true when the start event occurs. The first line of predicate logic (of the
semantics of page 24) shows this combination:

I|i |=c P1:Condition ∧ I|i, 0, 0 |=e P2:Event

This line is true for every segment I|i that satisfies both the condition and the
event in the last state. The event is used without lower bound or shift: l = 0, and
s = 0.

In figure 4.9 a graphical representation is provided for some pre-condtion pre and

start event: X and Y
+7−→ 5 minutes. The shaded states are potentially part of the

interval (if a suitable end is found).

Pre

Y

i

5 minutes

X

Figure 4.9: i in case of X and Y
+7−→ 5 minutes.

4.2.3 The end of the period

The end of the period can be specified by a choice of period-delimiters. Table 4.2
shows the options.

There are two groups of period delimiters: until and duration. The first is
combined with an event that triggers the end. The duration takes a time value to
determine the end. As with events, extra information is needed to have the end
of the period reliably detected by all types of delimiters: the whole interval I, the
intended start of the period i, and the proposed end the period j:

I, i, j |=p P3:Period−delimiter

The definition above means informally: ‘If true, the period delimiter marks a
valid end in state j of I, given the intended period start i’. The third line of the

1For the remainder of this chapter, when an event is mentioned, this can be any
combination of events.

29

Chapter 4. Formalisation

4 Period-delimiter

− Until
. Event#8, p. 90

− Open-until
. Event#8, p. 90

− Until end

− Duration [Time]Numerical [Unit].Unit#5, p. 90

− Open-duration [Time]Numerical [Unit].Unit#5, p. 90

Table 4.2: The different options for the period delimiter.

goal semantics ensure that if some j marks a valid end, there is no other j which
occurs earlier and that also marks a valid end:

q∃ i < k < j . I, i, k |=p P3:Period−delimiter

How the individual period delimiters work out will be discussed now.

Until

The until operator does what one would expect: it marks the end of the period when
an event occurs. The semantics are as follows:

I, i, j |=p Until P1:Event

iff I|j, i, 1 |=e P1:Event

The first notable thing is the use of i as lower bound: for bounded delayed events
used in the until clause, the bound is the start of the period. Effectively this means
that in those cases, the event itself should occur after the start of the period. The
second significant issue, is the shift of ‘1’.

Event

ji j-1

Figure 4.10: I|j, i, 1 |=e Event in case of a non-delayed end event.

For any non-delayed event the interval is terminated by until according to figure
4.10. (The shaded states constitute the period.) The figure shows that the last state
in which the behaviour should hold is σj−1: the behaviour should hold until the
moment the event occurs. For delayed events the situation is different. The delay
may expire in the middle of a state. Therefore, the behaviour should apply at least
to the part of the state where the delay has not yet expired. As a single state does
not change over time, this means that the behaviour should hold during the whole

30

4.2. The Goal Definition Language

state. In order to maintain the fact that the last state of the period is σj−1, a shift
value of 1 is needed as show in figure 4.11

ji j-1

Event

Delay

Shift

Figure 4.11: I|j−1, i, 1 |=e Event in case of a delayed end event.

Figure 4.11 will not change in case of bounded delayed events: the event occurs
after i. However, would the intended start be one or more states to the right (i.e. i
is bigger), then the event would occur before i and a bounded delay would not have
made the formula true. Figure 4.12 shows an interval which would only satisfy a
regular delayed event. However, a bounded delayed event with that value for the
delay will not be accepted for that j.

ji j-1

Event

Delay

Shift

Figure 4.12: An interval failing I|j, i, 1 |=e Event q +−→ Delay

Open-until

The open-until operator is a slightly modified version of the standard until. The
difference is important though. The semantics of the goal only ensure that the
behaviour is enforced for every interval between i and the first occurring delimiter.
However, when the delimiter does not occur any more, there is no interval. For
some goals the behaviour should be enforced ‘until the first delimiter or the end
of the interval, whichever occurs first’. For example, introducing open-until in the
example of figure 4.1, would mean that even if treatment would never leave active,
the behaviour (maintain blood-pressure below 90) would still be enforced until the
end of the interval.

I, i, j |=p Open-until P1:Event

iff j = |I|+ 1 ∨ I|j, i, 1 |=e P1:Event

For the semantics this means that the open-until is not only true for those j in
which the normal until would be true, but also for j = |I|+ 1. Selecting the period
up to σj−1 then yields the original end. The third line of the goal semantics ensures
that the end of execution cannot be selected unless there is no earlier delimiter.

Until end

The Until-end delimiter is only true for j = |I|+1. No other event can be specified so
every valid start make a period that run until the end of the interval. The semantics
are straight forward:

31

Chapter 4. Formalisation

I, i, j |=p Until end

iff j = |I|+ 1

Duration

Instead of specifying a specific event to close the period, it is also possible to provide
a duration. From σi, until the state in which the duration expires, the behaviour
should hold. Just like the shifted version of the delayed event, the duration makes
sure the time expires one state early to compensate for I|j−1.

I, i, j |=p Duration A1

iff ‖I|j−2
i ‖ < A1 6 ‖I|j−1

i ‖

Open-duration

An open version of the duration is also provided, which — if the remaining duration
of the interval is not enough to fit the requested duration into — accepts the end of
the interval as end. The semantics are

I, i, j |=p Open-duration A1

iff j = |I|+ 1 ∨ ‖I|j−2
i ‖ < A1 6 ‖I|j−1

i ‖

4.2.4 Behaviours

Once a value for i and j has been found which satisfy the left hand side of the
implication of table 4.1 on page 24, behaviour is enforced over the interval I|j−1

i .
However, since for delayed events it is required to have information about states
before σi (the event may occur before the start of the period), this part of the
interval is passed unmodified and i is included with the operator:

I|j−1, i |=b P4:Behaviour

Table 4.3 shows the behaviours that have been defined in Generic GDL. As will
become clear in this section, |=b behaviour will be expressed using |=c and |=e . Now
every behaviour in table 4.3 will be discussed.

maintain-during-period

If during the period some condition should be true the whole time, maintain-during-
period should be used. As i defines the start of the interval, the condition should
hold for every σk with k > i.

I, i |=b Maintain-during-period

P1:Condition

iff ∀ k > i . I|k |=c P1

32

4.2. The Goal Definition Language

2 Behaviour

− Maintain-during-period
. Condition#7, p. 90

− Avoid-during-period
. Condition-or-Event#6, p. 90

− Observe-during-period
. Condition#7, p. 90

− Observe-during-period [Operator].CompOpr#13, p. 91
[Count]Num

. Event#8, p. 90

− Observe-during-period range [Lowerbound]Num ([Count]Num)
. Event#8, p. 90

− Achieve-at-end
. Condition#7, p. 90

−

Sub-goal
Precondition

. Condition#7, p. 90

Time-specification
. Time-specification#3, p. 89

. Behaviour#2, p. 89

Table 4.3: The different behaviours defined in GDL

avoid-during-period

The avoid-during-period behaviour is exactly opposite to that of maintain-during-
period. In contrast with the latter, avoid-during-period can also accept events as
operand. For bounded delayed events, the bound is defined as i — the start of the
period. Therefore in those cases, only delayed events of which both the event and
the delay are in I|i should be avoided. The semantics when an event is provided is
given here, the (very similar) version with a condition as operand can be found in
C.1.3.

I, i |=b Avoid-during-period

P1:Event

iff q∃ k > i . I|k, i, 0 |=e P1

observe-during-period ...

If something should happen for a specific number of times, this can be specified using
observe-during-period. Three different version are available. Below the semantics are
given for the case where an exact number of occurrences of some event is required.
Semantics for the other syntactical options are given in appendix C.

33

Chapter 4. Formalisation

I, i |=b Observe-during-period = A2:Count

P1:Event

iff bP1cI,i = A2

The lower bound i is passed to the count function: in case of bounded delayed
events only those instances are counted of which the event lies after the start event.

The fact the state count will only increase over time can be used to add additional
knowledge to the semantics. In the example of above, if ‘bP1cI,i = A2’ it is also true
that ‘∀ k > i . bP1cI|k,i 6 A2’. Such knowledge may be exploited during verification
to detect failure early.

achieve-at-end

Achieve-at-end may used when some condition must be true by the end of the
interval. More specifically: the condition must be true in the last state of I:

I, i |=b Achieve-at-end

P1:Condition

iff I |=c P1

Sub-goal

Instead of a real behaviour, it is also possible to provide a sub-goal. The behaviour
that is described by the sub-goal is applied to the interval selected by the encom-
passing goal. The sub-goal may be nested multiple levels deep. As can be seen in
the formal semantics, the goal stands completely on itself: the states before i are
discarded right away. This means that both for bounded delay events, and regular
events, the events itself must be within I|j−1

i of the goal one level higher.

I, i |=b Sub-goal

Precondition
P1:Condition

Time-specification
From P2:Event

P3:Time−delimiter

P4:Behaviour

iff ∀ i′, j′ > i′ . (I|i)|i
′ |=c P1:Condition ∧ (I|i)|i

′
, 0, 0 |=e P2:Event

∧ I|i, i′, j′ |=p P3:Period−delimiter

∧ q∃ i′ < k′ < j′ . I|i, i′, k′ |=p P3:Period−delimiter

⇒ (I|i)|j
′−1, i′ |=b P4:Behaviour

Now that every element of table 4.1 has been discussed, and the semantics have
been defined, it is time to apply GDL to the patterns of chapter 3.

34

4.3. Patterns in GDL

4.3 Patterns in GDL

In the previous chapter, several patterns have been identified. This section will show
the expression of those patterns in GDL. These expressions will then be used in the
next section to formalise the running examples. The part of the template that needs
to be filled with the specifics of the actual goal, have been underlined:

:::::::
Right

::::::::
patient

::::::
group. For more information on when to use a given pattern refer to section 3.2.2.
For application examples, refer to the example goals in section 4.4

4.3.1 Pattern 1: Repetitive goal

Right patient group
+ repetitive event

Some time after repetitive event

Observe repetitive event at least once

As the figure above shows, the basic repetitive pattern uses the same event twice:
the first time as start-event, the second time as the event that needs to be observed
within some time. The schematic naturally leads to the application of the observe-
during-period behaviour. The required number of counts is specified as > 1. The
end event has been defined as an offset from the start event which points to the
From + duration format of the time specification. The template therefore looks like
this:

Goal Pattern Template 1: Repetitive event
Precondition

::::::
Right

:::::::::
patient

:::::::
group

Time-specification
From

:::::::::::
Repetitive

:::::::
event

Duration
:::::::
Offset

::::::
from

:::::::::::
repetitive

:::::::
event

Observe-during-period > 1

::::::::::::
Repetitive

::::::
event

35

Chapter 4. Formalisation

4.3.2 Pattern 2: Repetitive goal with explicit bounds

Right patient group
+ repetitive event

Upperbound - after repetitive event

Do not observe repetitive event Obs. once

Lowerbound - after repetitive event

On page 15, a second way of expressing repetitive events was introduced. This
version is somewhat more complicated since it actually consists of two behavioural
descriptions in one. The first part ensures that the repetitive events are at least some
minimum time apart (the purple part of the schematic). The second part defines a
specific interval in which the event must be observed once. The intervals follow each
other in time and when applied repeatedly, a regular repetition results.

The dualistic nature of the pattern is expressed in a translation into two separate
goals. One for each interval. The first interval wants to avoid the repetitive event:
avoid-during-period. The time specification takes the From + open-duration form.
The open-duration is used to ensure that the event is not repeated even in case the
given duration is longer than the remaining execution time. The second interval is
clearly of the observe-during-period type with = 1 as count specification. The start
event has an offset that is the size of the lower bound from the schematic. Due to
this offset, the duration should be the difference between the upper bound and the
lower bound. Altogether that leads to those two templates:

Goal Pattern Template 2a: Repetitive event with bounds
Precondition

::::::
Right

:::::::::
patient

:::::::
group

Time-specification
From

:::::::::::
Repetitive

:::::::
event

Open-duration
::::::
Lower

::::::::
bound

Avoid-during-period

::::::::::::
Repetitive

::::::
event

36

4.3. Patterns in GDL

Goal Pattern Template 2b: Repetitive event with bounds
Precondition

::::::
Right

:::::::::
patient

:::::::
group

Time-specification

From
:::::::::::
Repetitive

:::::::
event

+7−→
::::::
lower

::::::::
bound

Duration
:::::::
upper

::::::::
bound

::
-

::::::
lower

::::::::
bound

Observe-during-period = 1

::::::::::::
Repetitive

::::::
event

4.3.3 Pattern 3 and 4: Avoid during the period

Right patient group
+ start event

Do not observe event/condition

end event

Pattern 3 (shown here) and pattern 4 (see page 17) translate trivially into GDL:

Goal Pattern Template 3: Avoid
Precondition

::::::
Right

:::::::::
patient

:::::::
group

Time-specification
From

:::::
Start

:::::::
event

Until
:::::
End

:::::::
event

Avoid-during-period

:::::::
Event

:::
or

:::::::::::
condition

:::
to

:::::::
avoid

Pattern 4 only differs from pattern 3 by the time specification: From + duration
instead of From - until. Therefore, only a template for pattern 3 is given.

37

Chapter 4. Formalisation

4.3.4 Pattern 5: A should happen before B

Observe event () (at least) onceA

Right patient group
+ start event

end event ()B

The last pattern describes an ordering between events. This ordering is expressed
using the observe-during-period behaviour. ‘A should happen before B’ can be read
as ‘At the moment B occurs, A should already have been observed’. If B would never
happen, then it does not matter whether or not A has happened. This is exactly
the kind of behaviour until enforces: if a valid end is found, the behaviour should
hold. (Note that an open-until would for that reason be completely inappropriate
here. An open-until always yields an end point: either the event, or the end of the
interval.) Knowing this, the pattern obviously translates to observe-during-period :

Goal Pattern Template 5: A before B
Precondition

::::::
Right

:::::::::
patient

:::::::
group

Time-specification
From

:::::
Start

:::::::
event

Until
:::::::
Event

:::
B

Observe-during-period > 1

:::::::
Event

::
A

In the next section the pattern will be applied to the running examples of previous
chapters.

4.4 Formalisation

Now that the formal language has been defined, and the connection between GDL
and the goal model has been established, the actual formalisation step may take
place. It is important to realise that in this stage the formalisation will not be
complete: the atomic conditions and events themselves are not yet rewritten to a
GDL extension (i.e. GDL-Asbru). The reason for this lies again in the independence
of the goal to any specific model in this stage of the conversion.

Unfolding condition- and event combinations is part of the formalisation. The
connectives that have been defined in GDL (Element 7, 8, page 90), must be intro-
duced in the natural language. Consider the following event specification:

“11 months after a cholesterol or HDL-cholesterol measurement”

38

4.4. Formalisation

According to the specification both events need an offset of their own. Keeping
that in mind, the formalisation becomes:

Cholesterol measurement
+7−→ 11 months or

HDL-cholesterol measurement
+7−→ 11 months

By application of the patterns, the task of partial formalisation is reduced to
unfolding the content of the structured version, and inserting it to the variable fields
in the template.

4.4.1 Example 1

From page 3.2.2 on, the first example has normalised to a repetitive goal together
with a bootstrapping goal. The bootstrapping part looks a bit like template 1:
Repetitive goal. It has been adapted by replacing the (repetitive) start event by a
regular event.

Normalisation - Example 1.1: bootstrap

G[For people],S[from the start of the diabetes care], E[within 12 months],
B[cholesterol or HDL-cholesterol must be measured.]

Formalisation - Example 1.1: Bootstrap

Goal Example 1.1
Precondition

For people

Time-specification
From the start of the diabetes care
Duration 12 months

Observe-during-period > 1
Cholesterol measurement or HDL-cholesterol measurement

Notes:

1 Formalization duration has been chosen instead of open-duration since
there is no requirement that cholesterol must be measured even when
the care takes less than 12 months

The repetition part is modelled as a repetitive goal with explicit bounds (pattern
2, and templates 2a and 2b).

39

Chapter 4. Formalisation

Normalisation - Example 1.2: Repetition

G[For people],S[at earliest 11 months after a cholesterol or HDL-
cholesterol measurement], E[and at latest 13 months after that measure-
ment], B[another cholesterol or HDL-cholesterol measurement must be
performed once.]

For the formalisation, the combined events (or) of both the start and behaviour
parts in the structured version of example 1.2 have been separated. The duration of
the second interval was calculated according to template 2.

Formalisation - Example 1.2a: Repetition

Goal Example 1.2a
Precondition

For people

Time-specification
From

cholesterol measurement or
HDL-cholesterol measurement

Open-duration 11 months

Avoid-during-period
Cholesterol measurement or HDL-cholesterol measurement.

Formalisation - Example 1.2b: Repetition

Goal Example 1.2b
Precondition

For people

Time-specification
From

cholesterol measurement
+7−→ 11 months or

HDL-cholesterol measurement
+7−→ 11 months

Duration 2 months

Observe-during-period = 1
Cholesterol measurement or HDL-cholesterol measurement.

40

4.4. Formalisation

4.4.2 Example 2

Normalization - Example 2

G[For people with diabetes],S[between the start of the diabetes care],
E[and the end of the care], B[hypoglycaemia should not occur].

The formalisation of example 2 is a straight forward substitution exercise on
template 3: Avoid during the period.

Formalisation - Example 2

Goal Example 2
Precondition

For people with diabetes

Time-specification
From the start of the diabetes care
Until the end of the diabetes care

Avoid-during-period
hypoglycaemia

4.4.3 Example 3

Normalization - Example 3

G[For women with breast-cancer],S[after successful completion of breast-
conserving surgery] E[until 5 years thereafter], B[local recurrence should
not occur].

Formalisation - Example 3

Goal Example 3
Precondition

For women with breast-cancer

Time-specification
From successful completion of breast-conserving surgery
Duration 5 year

Avoid-during-period
local recurrence

41

Chapter 4. Formalisation

4.4.4 Example 4

Normalization - Example 4

G[For women with breast-cancer],S[after start of the medical care] but
E[before commencing mastectomy], B[the possibility of breast reconstruc-
tion should have been discussed with the patient].

Example 4 is formalised according to pattern/template 5: A before B.

Formalisation - Example 4

Goal Example 4
Precondition

For women with breast-cancer

Time-specification
From the start of the medical care
Until start of mastectomy

Observe-during-period > 1
discuss possibility of breast reconstruction with the patient

4.5 Conclusion

Generic GDL has been introduced as the formal expression of the goal model. On
the formal side it provides a canonical form that stays very close to the structured
natural language version. Due to this close tie, the domain expert is able to actually
verify each and every change that is made on the formal side. (i, iii of page 7)

The patterns make that the formalisation step is usually no more than a simple
matter of inserting parts of the structured version into the correct pattern. This
leads - even without documentation - to a high degree of traceability and a great
reduction in variability. Although some elements of the goal may sometimes be
expressed in more way in Generic GDL, the (names of) language elements have
been chosen in such a way that there is always a ‘intuitive’ way to do it. (iv, vi)

Since the actual events and conditions are strictly kept independent of any tar-
get model, the result of the first three steps is fully reusable for different models.
Multiple attachment steps may be based on the formalised goal. (v)

In some cases it may turn out that the normalisation is not specific enough to
choose a specific Generic GDL element. (e.g. whether to use an until, or a open-
until.) Application of Generic GDL to the goal therefore raises questions and by
answering them residual ambiguities are eliminated. The structured version must
be adjusted accordingly so the domain expert can verify the choices made. (ii, iii)

42

Chapter 5
Attachment
Chapter 4 has yielded a partially formalised version of the structured natural lan-
guage goal. This goal already contains the structure of the goal, however it is still
independent of any specific process model. The actual event and conditions still
need formalisation.

This second formalisation step is not trivial for multiple reasons. For example
consider the following condition:

“The patient has been informed about breast-reconstruction.”

Assume the goal needs to be expressed in GDL-Asbru. Depending on the process
model, there may be more than one way to express this. If the process model uses
a boolean parameter to store whether or not the patient has been informed, the
condition above would be expressed as follows:

Param PatientInformed = true

In other cases it may be more suitable to use the state of the plan to express the
condition. Assume there is a plan call InformPatient which takes care of informing
the patient. Then the above condition may look like this:

Planstate InformPatient = completed

Founding out which attachment options exist, and determining which version to
choose, makes the attachment difficult. To keep the domain expert (i.e. the med-
ical expert) involved, both versions of the goal — the structured natural language
version, and the formal GDL expression — are rewritten in parallel to fit onto the
selected process model: both version should represent the same goal at all times.

In the next section, problems that may be encountered during the attachment
will be discussed and whenever possible, solutions are provided. In section 5.3
GDL-Asbru will be introduced, and the actual attachment will be performed on the
examples of the previous chapters.

5.1 Difficulties

The aim of the attachment step is simple: express the goal in terms of the process
model so it can be verified. However, when doing so, several difficulties are en-
countered. Some of these were found by Van Gendt [3] in a study on how to apply
indicators to guidelines. Since the problem is a special case of applying goals to a
process model, the results are also applicable to the attachment step. The following
problems were identified:

1. “The parameter referred to in the indicator is not used at all in the protocol.”

2. “The act required by the indicator is not used in the protocol.”

43

Chapter 5. Attachment

3. “More medical information is needed for modelling.”

4. “Parameters in the protocol are not given a value that is comparable to the
value mentioned in the indicator.”

Missing concepts

The first two problems can be summarised as missing concepts. Missing concepts
are not always a real problem. Remember that the original goal may come from any
source and some may not be relevant for the model. Therefore, before proceeding
any further with the attachment, the domain expert needs to establish that the
selected goal is indeed relevant for the model.

In those cases where the goal is deemed relevant for the model, a missing concept
may shed the first light on an anomaly in the model. The question “why is this
concept not in the model?” must always be asked. Sometimes the answer can be
found in the origin of the model itself. A model based on “Treatment for diabetes
patients” may omit to refer to the fact that the patients have diabetes: it has not
been modelled explicitly. The goal may be adjusted according to the knowledge that
‘patient has diabetes’ is always true during the execution.

Another possibly cause for missing concepts can be found in the level of detail
of the model. A model generally represents an abstracted version of a part of the
domain. When a real-world process is being modelled, a lot of ‘obvious’ facts can be
expected to be omitted. In these cases where such a fact would be required, it may
— depending on the domain and model — be an option to enhance the model to
include the missing concept. Of course this can only be done if the additive is truly
‘common practice’ or ‘common knowledge’. If not, it is a missing concept that points
to an anomaly. The domain expert is the only one that can make this distinction.

A specific instance of the abstraction problem concerns the difference between
process goal and result goals. A process goal is only about the actions that follow
from the model. Therefore, it only needs a description of the order and conditions
for those actions. A result goal addresses the changes in the world that follow from
those actions. The connection between actions and results must be in the model to
be able to attach such a goal. If this relation has not been specified, and there is no
other source where this information can be found, the attachment will fail 1.

For a solution for a missing concept in the precondition, consider the following
example:

“G[For patients with diabetes], S[from the start of the diabetes care], ...”

1It is important to realise there is a difference between “Treatment X will not be
completed until result Y has been accomplished” and “Treatment X will result in
Y”. The former is a process goal and may be expressed using the complete condition
of Asbru. The latter is a result goal and needs the relation between the actions of
X and result Y. Verifying the latter is a subject that will not be discussed in this
thesis.

44

5.1. Difficulties

There may be models that don’t allow expression of ‘patients with diabetes’ as
a condition (e.g. there may not be a parameter expressing that fact). The solution
proposed here uses the fact that the start group and the precondition are closely
related: combined they define the start of the period. Using that, is may be possible
to rewrite the precondition into the start event. For the given example, this might
be :

“G[]S[From the start of the diabetes treatment]”

Since only patients with diabetes will be treated for diabetes, such a rewrite is
most likely valid in the given case. The details of the model, and the opinion of the
expert determine whether or not such a rewrite is available. Special care should be
taken that no relevant part of the execution is excluded from verification.

Substitution

In some cases, a missing concept is actually a case of substitution. This is basically
the third problem found by Van Gendt. There are three categories of substitution.
In the first case a more specific instance of the concept in the goal is available in
the model. E.g. the goal may refer to anti-angina medication whereas the model
may prescribe some specific sort of this type of medication. It is up to the domain
expert to decide whether or not the specific concept is really an instance of the more
general one. In the case that it is, the goal may be adjusted.

In the case of the inverse situation (where the model contains the more general
concept), the domain expert needs to check whether the goal has been formulated
too narrow. If it is, the more general concept may be inserted in the goal. If it is
not, this is a sign of an anomaly in the model.

The third category of substitution occurs when both the goal and the model
refer to a specific concept which can easily be exchanged. E.g. Both can mention
some specific kind of anti-angina medication. If both have have the same function
in relation to the goal - which is up to the domain expert do decide - then the goal
can be adjusted.

Compatibility

The last problem found by Van Gendt is about compatibility of values. In a sense,
this is again a problem regarding the detail of the model, only now concerning
values instead of concepts. E.g. The goal may refer to a temperature in degrees
Celsius while the model uses Fahrenheit. In such simple cases, a straight-forward
transformation of a numerical value will solve the problem. The problem becomes
more difficult when the model uses qualitative scales like ‘high’, ‘medium’, ‘low’.
Even if an accurate mapping to numerical values is available, comparing these with
a specific value in the goal may be problematic: the precision is not enough. When
such a problem arises, again this may point to an anomaly.

One possibility to cope with compatibility issues is to change the goal into a
more restrictive version. If the model is consistent with the more restrictive version
of the goal, it would also be consistent with the original. If it is not consistent, a less

45

Chapter 5. Attachment

restrictive version may be used. If this one is not consistent either, then the original
may also be considered inconsistent. If it is consistent, it is up to the domain expert
to draw conclusions.

When anomalies are discovered during the attachment of a goal (e.g. missing
concepts), these may prevent the further use of such a goal2. However, slightly
different versions of the goal may come to mind that can be modelled and which are
also relevant in the domain. When all goals come from a carefully selected test-set,
using such a deviating goal is probably not an option. In cases where good goals are
hard to find (the medical domain), such an opportunistic approach may pay off in
a richer set of goals.

5.2 GDL-Asbru

The formalisation has provided a frame of Generic GDL with natural language
descriptions for events and conditions. The GDL related part of the attachment
consists of replacing those natural language parts with domain specific event and
conditions expressed in a GDL-extension. Since the models used for the examples
are in Asbru, a set of Asbru specific event and conditions will be used: GDL-Asbru.

The domain specific extensions are based on the features provided by the mod-
elling language. Since Asbru is mainly about plans and parameters, these are tar-
geted in the domain events and conditions. (For a short introduction to basics of
Asbru see Asbru on page 47.) Table 5.1 shows the domain conditions which are
available. The first two, which are very similar, compare the value of a parameter
with either a value or with the value another parameter. This type of condition has
Param as prefix. The Planstate prefix allows testing whether or not a plan is in
a given state. Since there is no natural ordering between states only = and 6= is
allowed for the operator (since Generic GDL does allow boolean combinations of
conditions, this won’t limit the expression).

11 Domain-Condition

− Param [Param]String [Operator].CompOpr#13, p. 91
[Value]Str/Num

− Param [Param]String [Operator].CompOpr#13, p. 91
[Param]Str

− Planstate [Plan]String [Operator].BoolOpr#14, p. 91
[State].State#16, p. 91

Table 5.1: GDL-Asbru Domain conditions

Consider the following examples:

Param blood-pressure < 90

2The fact that anomalies have been found during the formalisation process makes
by definition that the goal has served its purpose: finding anomalies is the whole
point of verification.

46

5.2. GDL-Asbru

Asbru

Asbru is a plan-specification language defined as part of the Asgaard/Asbru
project. It allows representation of plans for the medical domain. Guidelines
are represented as a hierarchy of plans. Specific features include the use of tem-
poral patterns in specifications, bounding intervals for parameters and temporal
patterns, and a rich set to define the order of plan execution.

The plan is a central concept which contains actions and other plans, and which
defines which of those plans and actions are executed in what order: sequen-
tial, any-order, parallel or unordered. Which plans are optional and which are
mandatory is part of the specification. Among the possible actions is the ‘ask’
which initiates input of a variable. Every plan has a state-based life-cycle which
is depicted here:

rejected

possible

filter
failed

or time out
ready

setup
failedsetup

filter

filter
failed

filter
failed

considered

manual/automatic activated

suspended

aborted completed

abort

abort

complete

suspend

reactivate

inactive

Transitions from one state to another may be guarded or initiated by conditions.
The picture shows the different transitions and guards. The filter precondition
continuously guards the left hand side of the picture. The setup precondition
guards the transition to ready. Some transitions are coupled with the parent
plan. e.g. If the parent aborts, every child also aborts.

Parameters are another feature of Asbru. A parameter allows storage of values
and is used in conditions. Scales and calculated values are amongst the options.
The ask action is used to initiate a measurement of a value.

For more information on Asgaard/Asbru refer to [11][8].

47

Chapter 5. Attachment

Planstate inform-patient = completed

The first condition evaluates to true if the parameters in the Asbru process
model is less than 90. The second condition can be used to test whether plan
‘inform-patient’ is in de the completed state.

Table 5.2 shows the Asbru related events. The Transition event monitors state
transitions of plans. A plan may enter or leave a state. When it does, Transition
will register the event. The ParamUpdate and ParamUpdateTo events monitor
the content of parameters. The former registers an event when the value of a pa-
rameter is updated. This does not necessarily mean that the value must be changed
by the update. The latter event takes this a step further by putting a constraint on
the new value: only if the new value satisfies the condition, the event will register.

12 Domain-Event

− Transition [Plan]String [Dir].DirOpr#15, p. 91
[State].State#16, p. 91

− ParamUpdate [Param]Str

− ParamUpdateTo [Param]Str [Operator].CompOpr#13, p. 91
[Value]Str/Num

Table 5.2: GDL-Asbru Domain events

The following events describe the update of the ‘blood-pressure’ parameter, and
the transition to completed of the ‘inform-patient plan’:

ParamUpdate blood-pressure
Transition inform-patient enter completed

5.3 The attachment

The attachment process will be explored and demonstrated by going through the
process of attaching the 4 examples of the previous chapters. Since less concrete
guidelines can be given for the attachment than for the other steps, the documen-
tation of this step is even more important. All changes should be documented in
such a way that both the formal methods expert and the domain expert are able to
reconstruct and validate the result.

Any changes to the goal that are introduced during the attachment, will be
mentioned in the notes, and marked in the structured version by underlining the
relevant part.

5.3.1 Example 1

Ref: Formalisation 4.4.1, p. 39

Example 1 will be attached to the Asbru formalisation of the Diabetes protocol.
The version of 28.8.2005 is used. Although it is impossible to provide a standard

48

5.3. The attachment

way to perform the attachment, an element-by-element inspection will probably
work in most cases. Starting with the time-group, it appears that ‘For people’ does
not provide any distinction when related to this model: the process model is about
people that are under care of a doctor for (possible) diabetes. ‘For people’ contains
this group, and it can therefore be left out.

The start group only requires a further formalisation step into GDL-Asbru. ‘the
start of the diabetes care’ coincides with the start of the execution of the guideline
and thus with the start of the Asbru model. The start element is inserted.

The end element does not need any attention and therefore only the behaviour
group needs further inspection. Both ‘cholesterol’ and ‘HDL-cholesterol’ need to be
attached. There are two parameters in the model that contain those values and
there is a plan named ‘Cholesterol tests’ which asks for those values. There are no
other locations where those values are being asked for3. To make sure that every
measurement is used, the parameters themselves are used for the attachment instead
of the plan. A measurement is formalised as a parameter update. In this case there
is no need to change the structured version on this point.

The repetition part of the normalisation and formalisation do not contain any
other elements than the bootstrap part. Therefore, the same considerations apply
as stated above. These are the results of the attachment of example 1.

Attachment - Example 1.1: Bootstrap (DMT2 Protocol 28.8.2002)

G[
:::::

]S[From the start of the diabetes care], E[within 12 months],
B[cholesterol or HDL-cholesterol must be measured.]

Goal Example 1.1
Precondition

always-true

Time-specification
From start
Duration 12 months

Observe-during-period > 1
ParamUpdate cholesterol or ParamUpdate HDL-cholesterol

3At this stage there is still discussion about the so called ‘implicit ask’. The main
question is whether using a value in a condition will automatically trigger an ask on
that parameter when it is encountered. A doctor would probably do so when the
available value is too old to be trusted.

49

Chapter 5. Attachment

Notes:

1 Attachment The attachment target is the Asbru formalisation of the
DMT2 protocol, version 28.8.2002. The GDL-Asbru extension is used.

2 Attachment ‘For people’ is left out. In GDL this translates to always-
true in the precondition. In the structured version the group is made
empty.

3 Attachment ‘Start of the diabetes care’ coincides with the start of the
Asbru execution. Therefore start is inserted as start event.

4 Attachment Cholesterol measurement 7→ ParamUpdate total-cho-
lesterol

5 Attachment HDL-Cholesterol measurement 7→ ParamUpdate HDL-
cholesterol

Attachment - Example 1.2: Repetition (DMT2 Protocol 28.8.2002)

G[
:::

]S[At earliest 11 months after a cholesterol or HDL-cholesterol mea-
surement], E[and at latest 13 months after that measurement], B[another
cholesterol or HDL-cholesterol measurement must be performed once.]

Goal Example 1.2a
Precondition

always-true

Time-specification
From

ParamUpdate cholesterol or
ParamUpdate HDL-cholesterol

Open-duration 11 months

Avoid-during-period
ParamUpdate cholesterol or ParamUpdate HDL-cholesterol

Goal Example 1.2b
Precondition

always-true

Time-specification
From

ParamUpdate cholesterol
+7−→ 11 months or

ParamUpdate HDL-cholesterol
+7−→ 11 months

Duration 2 months

Observe-during-period = 1
ParamUpdate cholesterol or ParamUpdate HDL-cholesterol

50

5.3. The attachment

Notes:

1 Attachment Note 1, 2, 4 and 5 of the attachment of the bootstrap
part (Example 1.1) also apply here.

5.3.2 Example 2

Normalization - Example 2

G[For people with diabetes],S[between the start of the diabetes care],
E[and the end of the care], B[hypoglycaemia should not occur].

Example 2 is a typical result goal. With this goal it must be possible to verify
that the steps in the model add to the prevention of hypoglycaemia. To do so, a
parameter is needed that continuously shows whether hypoglycaemia would have
occurred given the actions. Although a boolean hypoglycemia is available in the
model, this parameter does not represent continuously the current status of the
patient: it only serves as a storage for the hypoglycaemia status when it is requested
by means of an ‘ask’ in the model. It may even be that the ‘ask’ is never reached.
Therefore, attachment to this parameter is not correct.

To problem found here, occurs with every purely action oriented process model
in combination with a result goal. While the model only prescribes the order of
actions, the goal is about the effects of those actions. To attach this category of
goals anyway, an extra model should be added to the attachment: a model that
describes the effects of the actions, on the subject of those actions. Then there
could be two partial attachments, which combined form a full attachment.

If such a model would be present for diabetes patients (e.g. a model of a typical
diabetes patient), then ‘hypoglycaemia’ could be attached to this other model4. The
goal could then be verified for this ‘typical patient’. (Of course, both models would
need to interact in such a way that the ‘typical patient’ responds according to the
actions prescribed in the first model.)

5.3.3 Example 3

Normalization - Example 3

G[For women with breast-cancer],S[after successful completion of breast-
conserving surgery] E[until 5 years thereafter], B[local recurrence should
not occur].

4Work is being done on modelling patient behaviour with respect to treatment.
People from the Radboud Universiteit Nijmegen together with people from the Uni-
versität Augsburg have succeeded in modelling small parts of a ‘prototypical’ patient
and used this information in the KIV symbolic verifier. When this work evolves it
may allow full attachment of result goals.

51

Chapter 5. Attachment

Just like the previous example, example 3 is result goal. Also in this case there
is no detailed and reliable information available that allows verification of the goal:
whether or not local recurrence will occur cannot be derived from the existing model
alone.

5.3.4 Example 4

Ref: Formalisation 4.4.4, p. 42

Example 4 will be attached to the 23.11.2005 Asbru model of Chapter 1 of the
breast-cancer guideline. This chapter is about diagnosis and treatment of women
with DCIS. Inquiry with the medical expert has shown that the group specification
(‘woman with breast cancer’) may in this case be considered equal to ‘women di-
agnosed with DCIS’. Therefore, the addition ‘For women with breast-cancer’ is left
out.

It was also found that in this model, the goal may easily be limited to the
treatment phase of the care. Whether or not to adjust the start-group is mainly a
matter of personal preference. Doing so would most likely reduce the proof effort: a
smaller part of the plan hierarchy needs to be examined. At the same time it does
alter the essence of the goal slightly: it is no longer enough when during diagnosis
the options are discussed with the patient. The patient now explicitly needs to be
informed during the treatment phase. In this example — for demonstration purposes
— the start group will be adjusted accordingly. The parent plan that contains all the
treatment steps is called ch1-treatment. The start group of the structured version
becomes: S[After the start of the BC treatment]. The corresponding GDL-Asbru
expression is: ‘Transition ch1-treatment enter active’.

Now there are two concepts left for attachment: the act of commencing mastec-
tomy and discussing the options with the patient. For mastectomy there is a plan in
the hierarchy with that same name. This plan has a child called mastectomy-proper
which models the actual mastectomy. The latter is perfectly suitable to attach
the start of of performing mastectomy to: ‘Transition mastectomy-proper enter
active’.

Concerning the text ‘the possibility of breast reconstruction should have been
discussed’: informing the patient must have been completed before proceeding with
mastectomy. The plan patient-information-reconstruction models the action and
‘Planstate patient-information-reconstruction = completed’ expresses the fact that
is must indeed be in the completed state. That finalises the attachment:

52

5.3. The attachment

Attachment - Example 4 (BC Ch1 23.11.2005)

G[
:::

],S[After the start of the
::::
BC

::::::::::::
treatment] but E[before commencing

mastectomy], B[the possibility of breast reconstruction should have been
discussed with the patient].

Goal Example 4
Precondition

always-true

Time-specification
From Transition ch1-treatment enter active
Until Transition mastectomy-proper enter active

Observe-during-period
Planstate patient-information-reconstruction = completed

Notes:

1 Attachment The attachment target is the Asbru formalisation of the
Dutch “Richtlijn - Behandeling van het mammacarcinoom”, Chapter 1,
version 23.11.2005. The GDL-Asbru extension is used.

2 Attachment ‘Woman with breast cancer’ is considered to be equal
to ‘women diagnosed with DCIS’, which is the domain of the chapter.
Therefore, the group specification has been discarded. Medical Expert:
DCIS is an early form of breast cancer.

3 Attachment A treatment plan is available in the process model. Since
the actions prescribed should according to the medical expert be part
of the treatment, the start event has been adjusted accordingly.

4 Attachment mastectomy-proper models the actual act of performing
the mastectomy while its parent, the mastectomy plan, groups several
treatment steps. Therefore, mastectomy-proper fits best on ‘performing
mastectomy’.

5 Attachment Since the operand of Observe-during-period has become a
condition instead of an event, the count requirement has been removed.

6 Attachment Start of the BC treatment 7→ Transition ch1-treatment
enter active

7 Attachment commencing mastectomy 7→ Transition mastectomy-
proper enter active.

53

Chapter 5. Attachment

8 Attachment the possibility of breast reconstruction should have
been discussed with the patient 7→ Planstate patient-information-
reconstruction = completed

5.4 Conclusion

The attachment is the most difficult step of the conversion process. Mapping con-
cepts correctly to the associated element in a formal model requires careful evalu-
ation of the exact function of the concept within the goal and in the model. The
previous chapter isolated the individual concepts within the goal. Since that simpli-
fies attachment into isolated concept-to-concept mappings, the variability is reduced
greatly. (vi of page 7)

If there would be any doubt regarding the specific meaning of any concept in
the goal, now it would become clear. In those cases it is essential to go back to the
normalisation and clarify those concepts by means of additional notes. (ii)

By making the different reasons for failure of the attachment clear, these cases
can be recognised in an early stage which prevents errors. Also by updating both
the formal version and the structured version at the same time, the correctness
of each and every step can be verified. Adding the proper documentation ensures
traceability. (iii, iv)

The result of the attachment will be the source for the final translation. When
different verification tools are used for one model, multiple translations may be
required. None of the work previously done has to be repeated to get to those
translations: although by now it is dependent of a specific model, the attachment
result is fully reusable for different target formalisms. (v)

54

Chapter 6
Translation
6.1 Mechanical translation

Once the attachment has been completed, only the translation to the formalism
of the verification tool is left. This translation should be a strictly mechanical
step: once the validity of the translation function has been established, mechanically
applying it will ensure that the semantics of the goal will not change. This is essential
since changes in this stage would be impossible to detect and validate by the domain
expert. The XML version of GDL allows for automatic translations.

The mechanical nature of the translation makes it trivial from a process per-
spective. No considerations, other than that the translation should have the same
semantics as GDL, need to be taken into account.

Section 6.2 will introduce the translation function of Generic GDL and GDL-
Asbru to KIV — one of the tools used in the Protocure project. This translation is
interesting both as an example of the translation step, and as a unconventional way
to express goals in KIV that yields some interesting properties.

Section 6.3 contains the KIV translations for examples 1 and 4 of the previous
chapters, followed by a section on optimisation. Finally section 6.5 contains the
conclusion.

6.2 GDL to KIV

KIV is one of the verification tools used in the Protocure project. Amongst others,
KIV offers the possibility to perform verification of parallel programs by symbolic
execution. For a brief introduction to KIV, refer to KIV on page 56. For more
information one the implementation of parallel programs, refer to Temporal logic in
KIV on page 57.

For the Protocure project, people from the formal methods group at the Univer-
sität Augsburg have implemented a subset of Asbru as a (parallel) program in KIV.
With this implementation, it has become possible to verify Asbru models through
symbolic execution. During previous chapter the goals were attached to such mod-
els. The goal and the initial state of the model will be combined in one sequent
which has to be proven.

Several techniques have been, and are being developed to make verification of
large sets of parallel programs feasible. Amongst others, there are quite successful
efforts to reduce the state explosion associated with parallel programs by using plan
abstractions in which the plan state is no longer important [10].

In the next section, a brief introduction to the current Asbru implementation
in KIV will be given. Only the parts relevant for this chapter will be described1.
After this introduction, the ideas and concepts behind the KIV expression of GDL
are explained in section 6.2.1.

1Since the implementation is ongoing work, the specification will most likely be
subject to changes in the (near) future.

55

Chapter 6. Translation

KIV

KIV, the Karlsruhe Interactive Verifier, is an advanced tool for the development
of correct software, including formal specification and verification. The KIV
system originates from 1986 at the University of Karlsruhe. Currently, branches
of KIV are located at Karlsruhe[6], Saarbrücken[5], and Augsburg[4].

KIV implements a sequent calculus based on First- and Higher order logic,
extended with Dynamic logic and Temporal logic. A sequent consists of two
parts: the antecedent, and the succedent. The disjunction of the formulas on
the succedent should follow from the conjunction of formulas on the antecedent:

(φ0, . . . , φn ` ψ0, . . . , ψm) ⇔ (φ0 ∧ . . . ∧ φn ⇒ ψ0 ∨ . . . ∨ ψm) (6.1)

Constructing a proof in KIV is done by rewriting the sequent into one or more
simpler sequent which at one point can be proven trivially. (Either by a contra-
diction on the antecedent, or when a term appears both on the antecedent and
on the succedent.) Formula 6.2 shows an example sequent:

A ∨ B, qB ` A (6.2)

Proving this sequent would require splitting A ∨ B. This results in two new
sequent, which — if both proven — provide proof of the original:

B, qB ` A and A, qB ` A (6.3)

The first sequent in formula 6.3 contains a contradiction on the antecedent and
is therefore true. The second sequent on the other hand contains A on both
sides which makes it also true. By repeatedly applying simplifications, a proof
tree is built. When all nodes are closed, the root node may be considered proven
as well, and so is formula 6.2.

A set of standardised simplification rules has been implemented, and a powerful
automatic simplifier is able to automatically reduce the complexity of first order
logic formulas to a large extend. Many proof branches are automatically closed
this way.

In the cases where the automatic simplifier is not able to perform any further
simplifications, user interaction is required. The user may — amongst others —
manually select simplification rules, backtrack or apply lemmas.

Programs are either represented as dynamic logic formulas, or as temporal logic
formulas. For these logics there are also simplification rules available which can
be applied automatically. However, support for automatic application of those
rules is not yet as comprehensive as for first order logic.

In the verification of programs induction playes an important role: in short, if
at some point in the trace an invariant can be found which makes the goal hold,
the rest of the trace may be considered consistent.

56

6.2. GDL to KIV

Temporal logic in KIV

One of the logics supported by KIV is Temporal Logic. Temporal logic was
added by Michael Balser of the Universität Augsburg, and described in his
PhD-Thesis [1].

With temporal logic it becomes possible to express formulas that relate to future
states. Amongst the implemented operator are always (2), eventually (3) and
next (• and ◦). Programs can be specified using a Pascal-like program syntax.
Internally, the programs are represented as temporal formulas. Support for
parallel formulas (and therefore, support for parallel programs) is added via the
parallel operator (‖).
The step rule advances the program on the sequent to the next step (symbolic
execution). In case of multiple execution options, multiple branches are spawned
in the proof-tree. For example, this may be the case when two or more programs
are running in parallel and multiple interleaving options exist.

To illustrate a step, here the behaviour of the if is shown and a simplified
explanation is provided:

if φ then ψ1 else ψ2 ⇔ (φ ∧ ψ1) ∨ (qφ ∧ ψ2) (6.4)

The if itself does not actually require execution. The step first rewrites it to
the form on the right hand side of the equivalence. Then the step is applied
to ψ1 and ψ2. The first instruction in ψ1 (and likewise in ψ2) is ‘executed’ by
rewriting it to the execution result. The rest of the program in ψ1 is taken to
the next state. E.g. assume ψ1 : [N := 5; ψ′

1], then applying step to ψ1 yields:
N ′ = 5 ∧ ◦ [ψ′

1] (simplified). This replaces ψ1 (and likewise ψ2) on the right
side of eqn. 6.4. The resulting formula causes a case-split due to the ‘or’ which
yields two branches. If φ is known, then one of the branches will be closed
immediately. Otherwise, both branches remain open.

To allow proof-abstractions even when using parallel programs, variables on
the sequent are updated in two stages during the step: X → X’ → X” (notice
the upper-case). The first transition, called the system step is defined by the
program. If the program wants to set the value of a variable for the next state,
then it assigns the new value to X’. If no new value is assigned to a variable,
the old value is retained automatically: X ′ = X. The second transition is called
the environment step. During the environment step, values are not retained by
default. This means that formulas on the sequent should explicitly specify the
relation between X ′ and X ′′. Once the whole step has been completed, the new
X gets the value of the previous X ′′.

X X''X'
System Environment

Apart from the described dynamic variables, there are also static variables: once
known, they never change. Static variables are written lower-case by convention.

57

Chapter 6. Translation

6.2.1 Asbru in KIV

Asbru evolves around plans which transition from state to state (see Asbru on page
47). To keep track of the state in KIV, the state information of each plan in the
hierarchy is stored in a hash-table like structure: AS (Asbru State). During the step,
the environment takes care of the state transitions when applicable (according to
Asbru semantics). On the sequent, known states of the individual plans are visible
like this: AS[‘treatment’] = inactive. Since AS is just a regular variable, it is
also possible to refer to AS’[‘treatment’] and AS’’[‘treatment’].

A clock, which progresses during execution, is part of the implementation. The
clock is named AC and each step it is incremented by one. The clock is abstract
in the sense that one ‘tick’ is not bound by default to real-world time. If this is
required, this has to be defined explicitly. For the rest of this chapter it is assumed
that one tick coincides with one second.

The Patient Data History — PDH — contains the patient record: the last known
measured values of the patient. An entry is defined by a clock value, and a variable
name: PDH[Clock][‘blood-pressure’]. Two fields can accessed. The first is
.value. Referring to this field, yields the value of the variable. An additional
.update field has been added to support detection of writes. If a value was just
written, .update is true. Since AC contains the current value of the Asbru clock,
PDH[AC][‘blood-pressure’] .value accesses the last recorded blood pressure.

For the remainder of the chapter, the antecedent of the sequent can be visualised
to contain the program and a list of formulas representing the plan states, patient
data, the clock and other Asbru related information. In other formulas, these values
can be referenced. The basic format for any proof regarding programs is a follows:

[Program] ∧ StateInfo ` Goal

At all times, for every reachable state, the goal must hold.

6.2.2 Basic principles of the translation

Any goal that is expressed in GDL-Asbru is about values and events regarding
plan-states and parameters. In this section gradually a goal expression is built. To
provide an idea of how individual events will be translated, here the translation is
given for the transition event:

T
(
Transition A1:Plan enter A2:State

)
AS[‘A1’] 6= T(A2) ∧ AS’’[‘A1’] = T(A2)

Effectively the formula says: ‘If currently the state of A1 is not yet A2, and in
the next state it is, then this formula is true’. (The double primed version will be the
non-primed version in the next state.) For each GDL-Asbru event and condition,
such a translation is available which can be inserted in the rest of the translation.
In the next section, the general structure of the translation of Generic GDL is
introduced.

58

6.2. GDL to KIV

A simple behaviour

Using the event and condition translations, the goal body itself can be translated.
Instead of trying to find a single temporal logic formula to put on the succedent,
an approach with trigger variables has been chosen. For example, assume a vari-
able called StartEventTrigger existst which is false until the start event has been
detected. Using this variable, some behaviour may be described. E.g. A blood
pressure lower than 70 should be maintained after the start event. This could be
written as:

StartEventTrigger ⇒ PD[‘Blood-pr’] < 70

If a variable called EndEventTrigger would become true once the end-event has
occurred, then then the expression could be extended to:

StartEventTrigger ⇒ PD[‘Blood-pr’] < 70 ∨ EndEventTrigger

In plain English: ‘After the start event, the blood pressure needs to be below
70 unless the end event has been detected. This is exactly what the goal model is
about. Since the formula should always be true instead of just in one state, the
always operator (2) needs to be added. The final behavioural description then
becomes:

2 (StartEventTrigger ⇒ PD[‘Blood-pr’] < 70 ∨ EndEventTrigger)

This behaviour coincides with the Maintain-during-period Blood-pr < 70
behaviour. Now, the task left is to provide the administrative formulas for the
StartEventTrigger and the EndEventTrigger according to the GDL semantics.

StartEventTrigger

During the execution of the program, there needs to be detection of the start event.
The actual detection has already been shown at the start of section 6.2.2, however,
StartEventTrigger needs to be updated accordingly. In pseudo-code:

If Start Event Then
StartEventTrigger’’ := true

StartEventTrigger’’ is used here for a good reason: in each and every state,
StartEventTrigger has a well defined value. When it is false — which it is
while the start event has not yet occurred — it is impossible to make it true:
StartEventTrigger can not be true and false in the same state. The only pos-
sibility is to make StartEventTrigger true in the next state. This is exactly what
happens when assigning true to the double primed version. Of course now the event
detection formulas need to be formulated in such a way that an event is detected in
advance. E.g. the translation for Transition evaluates to true when the event will
occur during the next step.

59

Chapter 6. Translation

Since by default the environment will not preserve the values of dynamic variables
between states, this needs to be explicitly added. Therefore, this constraint to the
environment will be added in the else part: if the start event is not detected, then
the value of StartEventTrigger in the next state will be equal to the value in the
current state.

If Start Event Then
StartEventTrigger’’ := true

Else
StartEventTrigger’’ := StartEventTrigger’

To make the if-clause comply with the GDL semantics, the precondition needs
to be incorporated in the formula. The semantics dictate that the precondition is
true in the state that comes right after the event. The condition should therefore
be checked for the patient data of the next state: PDH’’.

A final addition to the if-clause concerns the clock. For goals that specify a
duration for the time-limiter, the time of the start event needs to be recorded. A
variable PS-TReP (Period Start-Time Reference Point) is used for this purpose. It
gets its value once the event is detected. If not, the old value is propagated. Since
PS-TReP should not be reset if the start event would occur again, an extra check of
StartEventTrigger is added to enforce single triggering.

If qStartEventTrigger ∧ Precondition” ∧ Start Event Then
StartEventTrigger’’ := true

PS-TReP’’ := AC’’

Else
StartEventTrigger’’ := StartEventTrigger’

PS-TReP’’ := PS-TReP’

Now the only thing left to add is the initial value for the StartEventTrigger.
PS-TReP does not need an initial value since the formula assures assignment before it
is used any further. Altogether this yields the following expression in KIV notation:

(: Initial system state :)

qStartEventTrigger,

(: Start event detection :)

2 (qStartEventTrigger ∧ Precondition” ∧ Start Event

⊃ StartEventTrigger’’ ∧ PS-TReP’’ = AC’’

; StartEventTrigger’’ = StartEventTrigger’

∧ PS-TReP’’ = PS-TReP’)

EndEventTrigger

The administration formulas for the EndEventTrigger are very similar to those of
the StartEventTrigger. The main difference is the absence of the precondition

60

6.2. GDL to KIV

and the PS-TReP variable. Next to the event itself, StartEventTrigger is on the
if-clause. This is required, since the EndEventTrigger is only relevant once the start
event has occurred. Finally, an extra clause is added stating that if the end event
has occurred, from the next state on, EndEventTrigger will always be true. This
extra knowledge allows KIV to close the proof immediately after the end event. The
following definition will result:

(: Initial system state :)

qEndEventTrigger,

(: End event detection :)

2 (StartEventTrigger ∧ End Event

⊃ EndEventTrigger’’ ∧ • (2 EndEventTrigger)

; EndEventTrigger’’ = EndEventTrigger’)

6.2.3 Events, conditions and behaviours

This section will discuss the translation of some GDL events, conditions and be-
haviours. This selection of events and conditions allows translation of example 1
and 4 of the previous chapter and illustrates the way GDL can be expressed in KIV.

Event translations

Some events require bookkeeping (e.g. the delayed event needs to keep record of
the the expired time since the occurrence of the event itself). Therefore, event
translations consist of two parts. The first part is called support and is put between
the other formulas on the antecedent. This part is responsible for taking care of
administrative tasks like taking care of time or counting. It keeps track of support
variables, and allows to ‘detect’ the event as a whole correctly. If support is not
defined, it is considered to be empty.

The second part is called test. The test part of the translation is inserted at the
location where the occurrence of the event is actually tested (E.g. at the location
of the bold printed End Event in the EndEventTrigger section). Here the support
variables (if any) are put to use. First here are the translations of the two necessary
Asbru events:

T
(
Transition A1:Plan enter A2:State

)
Test: (AS[‘A1’] 6= T(A2) ∧ AS’’[‘A1’] = T(A2))

T
(
ParamUpdate A1:Parameter

)
Test: (PDH’’[AC][‘A1’] .update)

61

Chapter 6. Translation

The GDL start element denotes the start of the execution. Formally, the imple-
mentation shown below breaks with the GDL semantics with respect to the first
state: GDL includes the first state in the interval, while the translation starts
checking the behaviour from the second state. However, given the details of the
KIV/Asbru translation, this will not influence the outcome of the verification2.

T
(
start

)
Support: FirstState, 2 (qFirstState’’)
Test: (FirstState)

The translation of delayed events for use in the From part of the time specification
is given below (DSE stands for Delayed Start Event). Note that this translation
cannot be applied to delayed events used as operand to the (open-) until, nor as
operand to any behaviour. This is caused by the fact that the provided translation,
detects the expiring of the delay one state ahead. For (open-) until and operands to
for example avoid-during-period, detection in the state itself is required.

TFrom

(
A1:Event

+7−→ A2:Time

)
Support: qDSE-Occurred,

2 (qDSE-Occurred ∧ T(A1)
⊃ DSE-Occurred’’ ∧ DSE-TReP’’ = AC

; DSE-Occurred’’ = DSE-Occurred’

∧ DSE-TReP’’ = DSE-TReP’)
Test: (DSE-Occurred’’

∧ diff(AC, DSE-TReP’’) < seconds(A2)

∧ diff(AC’’, DSE-TReP’’) > seconds(A2))

In the support part, the actual event is detected, and once it happens, the time
of the occurrence is stored in DSE-TReP. The test part checks whether the delay will
expire during the next state. When used as start event, this means that from that
state on the behaviour will be checked. The requirement for this to work is that
every step in the Asbru/KIV model is of equal length (e.g. 1 second). For simplicity
it is assumed here that A2 contains the time of the delay in seconds, or that the
given time will be converted to seconds.

Although not really an event, but nevertheless used as an end event, is a duration
specification. The duration evaluates to true when the duration expires during the
current state. This makes the EndEventTrigger true in the subsequent state, and
therefore the behaviour is checked up-to and including the state in which the duration
expires:

2A translation which would take the first state into account is the following:
StartEventTrigger ∧ 2 (StartEventTrigger’’). However, this would replace
start event detection formulas entirely. For clarity, the structure that has been
introduced so far will be maintained, which leads to the slightly deviating semantics.

62

6.2. GDL to KIV

T
(
Duration A1:Time

)
Test: (diff(AC, PS-TReP’’) < seconds(A1)

∧ diff(AC’’, PS-TReP’’) > seconds(A1))

Condition translation

For the examples of the previous chapter only one condition is required, which is
shown here:

T
(
Planstate A1:Plan = A2:State

)
Test: (AS[‘A1’] = T(A2))

Behaviour translations

Here the translations are provide for avoid-during-period and observe-during-period.
However, since the exact semantics are depending on which time delimiter has been
chosen (e.g. until vs. open-until), the context of the translation is added to the
translation function.

As with events, some behaviours require bookkeeping. Therefore, for behaviours
the translation has been split into a support part and a check part. The support
part will be put on the antecedent again. The check part belongs on the succedent
and described the core behaviour.

Topen−duration

(
Avoid-during-period A1:Event

)
Check: 2 (StartEventTrigger ⇒ qT(A2) ∨ EndEventTrigger’’)

Avoid-during-period does not require bookkeeping of any kind. Since open-
duration is used, any occurrence of the event before the end event is seen causes
immediate failure of the goal. If the end event occurs simultaneously with the
guarded event, the goal is not broken.

The observe-during-period in a non-open environment, requires that the number
of occurrences is checked once the end event has actually been observed. This
requires counting of the occurrences from the moment StartEventTrigger becomes
true. The final check is made in the state where the EndEventTrigger is about to
become true. In this state the count cannot be changed any more, since for an event
to be counted it must occur completely between the start and the end.

63

Chapter 6. Translation

Tuntil+duration

(
Observe-during-period > n A1:Event

)
Support: ObsCount = 0,

2 (StartEventTrigger ∧ T(A1)
∧ qEndEventTrigger’’

⊃ ObsCount’’ = ObsCount’ + 1

; ObsCount’’ = ObsCount’)
Check: 2 (qEndEventTrigger ∧ EndEventTrigger’’

⇒ ObsCount > n)

Observe-during-period in a non-open environment with a condition as operand
is translated similarly. Since the exact count is not important, a boolean is used
instead of a number. Since Observed may be changed during the last interval,
Observed’’ is checked.

Tuntil+duration

(
Observe-during-period A1:Condition

)
Support: qObserved,

2 (StartEventTrigger ∧ T(A1)
∧ qEndEventTrigger

⊃ Observed’’

; Observed’’ = Observed’)
Check: 2 (qEndEventTrigger ∧ EndEventTrigger’’

⇒ Observed’’)

Since the translations shown are sufficient to translate the examples with, the
other Generic GDL behaviours will not be translated here. However, if required,
these other behaviour can be translated using similar structures as the provided
translations.

6.3 Translation

After attachment, two out of four examples are left for translation: example 1 and
example 4. First the translation of example 1 will be discussed, followed by the
translation of example 4. Due to the relatively simple nature of the 4th example,
some additional support formulas will be introduced there.

6.3.1 Example 1

During the previous chapters, example 1 has been expressed using three separate
goals. Each of these goal must hold in order for example goal one to hold. The
three different goals may be proven individually, or all at once. For the latter it is
required to put them together in one sequent. For clarity, here the different goals
will be kept separately.

64

6.3. Translation

Bootstrap

Attachment - Example 1.1: Bootstrap (DMT2 Protocol 28.8.2002)

Goal Example 1.1
Precondition

always-true

Time-specification
From start
Duration 12 months

Observe-during-period > 1
ParamUpdate cholesterol or ParamUpdate HDL-cholesterol

Translation - Example 1.1: Bootstrap (DMT2 Protocol 28.8.2002)

(: Initial system state :)

qStartEventTrigger, qEndEventTrigger, FirstState, ObsCount = 0,

(: Support for ‘start’ in From:)

2 (qFirstState’’),

(: Start event detection :)

2 (qStartEventTrigger ∧ true ∧ FirstState

⊃ StartEventTrigger’’ ∧ PS-TReP’’ = AC’’

; StartEventTrigger’’ = StartEventTrigger’

∧ PS-TReP’’ = PS-TReP’),

(: End event detection :)

2 (StartEventTrigger

∧ diff(AC, PS-TReP’’) < seconds(31536000)

∧ diff(AC’’, PS-TReP’’) > seconds(31536000)

⊃ EndEventTrigger’’ ∧ • (2 EndEventTrigger)

; EndEventTrigger’’ = EndEventTrigger’),

(: Support part of the behaviour :)

2 (StartEventTrigger ∧ qEndEventTrigger’’
∧ (PDH’’[AC][‘cholesterol’] .update)

∨ (PDH’’[AC][‘HDL-cholesterol’] .update)

⊃ ObsCount’’ = ObsCount’ + 1

; ObsCount’’ = ObsCount’)
`
(: The check part of the behaviour :)

2 (qEndEventTrigger ∧ EndEventTrigger’’ ⇒ ObsCount > 1’’)

65

Chapter 6. Translation

The translation of the bootstrap goal is reasonably straight forward. It consists of
a combination of the translation elements discussed before. Verification of this goal
would look as follows. In the first state, the condition within start event detection
would be true. This causes the then part to be added to the sequent. The result
will be that after the next step, StartEventTrigger will be on the sequent, just
like PS-TReP = 13. Both StartEventTrigger and PS-TReP will maintain this value
for the rest of the proof due to the fact that from now on only the else part of start
event detection will be executed.

EndEventTrigger is false, and as long as the duration has not expired, this value
will be copied by the else part of end event detection. If at some stage during the
steps that follow, either ‘cholesterol’ or ’HDL-cholesterol’ is updated, the condition
within support part of the behaviour will become true. ObsCount will be incremented
each time this happens.

After 31536000 one-second steps (or some induction), the end event detection will
make EndEventTrigger’’ true. As a result, the left hand side of the implication on
the succedent becomes true and therefore, ObsCount must be greater or equal than 1.
If this is not the case, there is no way to close the proof. If it is, 2 EndEventTrigger

will allow KIV to close the proof in the subsequent state (the left hand side of the
implication will always be false). Although this addition is not strictly required, it
does shorten the proof effort considerably.

Repetition

One aspect that has been avoided so far, is how to handle repetitive events. The
semantics of GDL describe that any interval between a valid start event, and the
subsequent end event should adhere to the behaviour. In the bootstrap part of the
goal, a second occurrence of start is impossible, and therefore the given translation
is valid. For the repetition part of example 1 however, something more is required.

Attachment - Example 1.2a: Repetition (DMT2 Protocol 28.8.2002)

Goal Example 1.2a
Precondition

always-true

Time-specification
From

ParamUpdate cholesterol or
ParamUpdate HDL-cholesterol

Open-duration 11 months

Avoid-during-period
ParamUpdate cholesterol or ParamUpdate HDL-cholesterol

3Actually, the assigned value will be a function of AC during the execution,
however conceptually it contains the value 1.

66

6.3. Translation

For every occurrence of the StartEvent, a separate set of EndEventTrigger,
PS-TReP and possibly other support variables are needed. For each of those vari-
ables, correct bookkeeping must be done. One way to achieve this, is to rewrite the
translations which were used earlier with a universal quantifier:

2 (∀ n < CurrentNumberOfEvent . qEndEventTrigger(n) ...)

Using the ∀ quantifier on the antecedent however, causes great problems for
the simplifier. Therefore, another approach was taken: the required formulas are
dynamically added to the sequent when a new start event occurs. The behaviour
on the succedent can use the all-quantifier without any problems. This technique is
demonstrated by the following translation of example 1.2a:

Translation - Example 1.2a: Repetition (DMT2 Protocol 28.8.2002)

(: Initial system state :)

EventCount = 0,

(: Start event detection :)

2 (true

∧ (PDH’’[AC][‘cholesterol’] .update)

∨ (PDH’’[AC][‘HDL-cholesterol’] .update)

⊃ EventCount’’ = EventCount’ + 1

∧ ∃ n . n = EventCount’

(: Start event bookkeeping :)

∧ PS-TReP’’(n) = AC

∧ • (2 (PS-TReP’’(n) = PS-TReP’(n)))

∧ 2 (StartEventTrigger’’(n))

(: End event detection :)

∧ 2 (diff(AC, PS-TReP’’(n)) <

seconds(28908000)

∧ diff(AC’’, PS-TReP’’(n)) >
seconds(28908000)

⊃ EndEventTrigger’’(n)

∧ • (2 EndEventTrigger(n))

; EndEventTrigger’’(n) =

EndEventTrigger’(n))
; EndEventCount’’ = EndEventCount’),

⇑ Continued on the next page

67

Chapter 6. Translation

Continued ...
⇓

`
(: The check part of the behaviour :)

2 (∀ n < EventCount .

StartEventTrigger(n)

⇒ q(PDH’’[AC][‘cholesterol’] .update

∨ PDH’’[AC][‘HDL-cholesterol’] .update)
∨ EndEventTrigger’’(n)

The translation roughly contains the same elements that were defined before,
however this time only the start event detection is implemented as a top level for-
mula. The whole systems evolves around the EventCount variable. If the start
event is not detected, the value of this variable is passed on to the next state un-
changed. The situation changes when the first start event is detected. At that point,
EventCount’’ = EventCount’ + 1 is put on the sequent. The second formula that
is put on the sequent, is the existentially quantified formula. The quantifier is a
way to make KIV fill in a real number for n in the rest of the formula (instead of
some temporary static variable like eventCount0). By immediately stating that n =

EventCount’, the quantifier can immediately be simplified away, and the contained
formula is put on the sequent:

PS-TReP’’(0) = AC,
• (2 (PS-TReP’’(0) = PS-TReP’(0))),
2 (StartEventTrigger’’(0)),
...

The part shown here takes care of the bookkeeping for the start event. Since
these formulas will only appear on the sequent once the start event has occurred for
that index (i.e. 0), no if-then-else is required here.

The first line sets the PS-TReP’’(0) variable like before. The second line makes
that for every subsequent state, the value is copied. The next (•) is required to avoid
double assignment to the double primed version in the current state. The third
line sets StartEventTrigger’’(0) to true for the rest of the execution. Although
strictly speaking the use of StartEventTrigger is not required, is does keep the
format closer to the format originally presented.

The rest of the formulas in the scope of the quantifier result in the regular
formulas of end event detection, however this time with a numerical index. This
process can be repeated endlessly, each time yielding variables with a new index.

The succedent contains a quantified version of the behaviour. For every single
start event that has been detected, required behaviour is enforced.

68

6.3. Translation

Repetition revisited

Attachment - Example 1.2b: Repetition (DMT2 Protocol 28.8.2002)

Goal Example 1.2b
Precondition

always-true

Time-specification
From

ParamUpdate cholesterol
+7−→ 11 months or

ParamUpdate HDL-cholesterol
+7−→ 11 months

Duration 2 months

Observe-during-period = 1
ParamUpdate cholesterol or ParamUpdate HDL-cholesterol

The translation of example 1.2b follows the same pattern as example 1.2a. How-
ever, this goal uses a combination of delayed start events. Since any number of events
may happen, dynamic bookkeeping is required. For every event, a new DSE-TReP(n)

is created. To be able to detect expiring of the delay of any of the events that hap-
pened earlier, for each occurrence a dedicated expiration detection formula is added
to the sequent. This formula evaluates to a variable DSE-Expired(n), which can be
used for the test.

DSE-Count = 0,
2 (Event

⊃ DSE-Count’’ = DSE-Count’ + 1

∧ ∃ n . n = DSE-Count’

(: Time related bookkeeping :)

∧ DSE-TReP’’(n) = AC

∧ • (2 (DSE-TReP’’(n) = DSE-TReP’(n)))

(: Expiration detection :)

∧ qDSE-Expired(n)
∧ 2 (diff(AC, DSE-TReP’’(n)) < Delay

∧ diff(AC’’, DSE-TReP’’(n)) > Delay

⊃ DSE-Expired’’(n)

; DSE-Expired’’(n) = DSE-Expired’)
; DSE-Count’’ = DSE-Count’)

Once the first event has been detected, DSE-Count’’ is assigned the incremented
value of DSE-Count’. Additionally DSE-TReP’’(0) is assigned, and a formula is
added to retain the value during subsequent states. The detection formulas which

69

Chapter 6. Translation

are added to the sequent initially set DSE-Expired(0) to false. Further it checks
with DSE-TReP’’(0) whether the delay has expired. DSE-Expired’’(0) is set to
true once it is. Otherwise, the previous value is retained.

The test part is build around an existential quantifier as can be seen in the trans-
lation. Once it has been detected, the formulas are again like in example 1.2a, using
EventCount to keep track of the number of detected start events. Counting the
number of guarded events (by the observe-during-period should be done indepen-
dently for each interval. Therefore the support code is also part of the dynamically
added formulas.

Translation - Example 1.2b: Repetition (DMT2 Protocol 28.8.2002)

(: Initial system state :)

EventCount = 0, DSE-Count = 0,

(: Delayed start event support :)

2 ((PDH’’[AC][‘cholesterol’] .update)

∨ (PDH’’[AC][‘HDL-cholesterol’] .update)

⊃ DSE-Count’’ = DSE-Count’ + 1

∧ ∃ n . n = DSE-Count’

(: Time related bookkeeping :)

∧ DSE-TReP’’(n) = AC

∧ • (2 (DSE-TReP’’(n) = DSE-TReP’(n)))

(: Expiration detection :)

∧ qDSE-Expired(n)
∧ 2 (diff(AC, DSE-TReP’’(n)) <

seconds(28908000)

∧ diff(AC’’, DSE-TReP’’(n)) >
seconds(28908000)

⊃ DSE-Expired’’(n)

; DSE-Expired’’(n) = DSE-Expired’)
; DSE-Count’’ = DSE-Count’)

(: Start event detection :)

2 (true ∧ (∃ n . qDSE-Expired(n) ∧ DSE-Expired’’(n))

⊃ EventCount’’ = EventCount’ + 1

∧ ∃ n . n = EventCount’

(: Start event bookkeeping :)

∧ PS-TReP’’(n) = AC

∧ • (2 (PS-TReP’’(n) = PS-TReP’(n)))

⇑ Continued on the next page

70

6.3. Translation

Continued ...
⇓
∧ 2 (StartEventTrigger’’(n))

(: End event detection :)

∧ 2 (diff(AC, PS-TReP’’(n)) <

seconds(5256000)

∧ diff(AC’’, PS-TReP’’(n)) >
seconds(5256000)

⊃ EndEventTrigger’’(n)

∧ • (2 EndEventTrigger(n))

; EndEventTrigger’’(n) =

EndEventTrigger’(n))

(: Support part of the behaviour :)

∧ ObsCount(n) = 0

∧ 2 (StartEventTrigger(n)

∧ (PDH’’[AC][‘cholesterol’]

.update)

∨ (PDH’’[AC][‘HDL-cholesterol’]

.update)

∧ qEndEventTrigger’’
⊃ ObsCount’’(n) = ObsCount’(n) + 1

; ObsCount’’(n) = ObsCount’(n))
; EndEventCount’’ = EndEventCount’),

`
(: The check part of the behaviour :)

2 (∀ n < EventCount .

StartEventTrigger(n)

⇒ q(PDH’’[AC][‘cholesterol’] .update

∨ PDH’’[AC][‘HDL-cholesterol’] .update)
∨ EndEventTrigger’’(n)

6.3.2 Example 4

Example 4 is translated again for a single occurrence of the start event. Given the
structure of the plan, during the execution, treatment will only become active once.

The rest of the translation is very straight forward. The elements that were intro-
duced in the previous sections can easily be recognised. Since duration is not used,
PS-TReP has been left out of the translation. The observe-during-period requires a
boolean support part which has been added to the sequent.

71

Chapter 6. Translation

Attachment - Example 4 (BC Ch1 23.11.2005)

Goal Example 4
Precondition

always-true

Time-specification
From Transition ch1-treatment enter active
Until Transition mastectomy-proper enter active

Observe-during-period
Planstate patient-information-reconstruction = completed

Translation - Example 4 (BC Ch1 23.11.2005)

(: Initial system state :)

qStartEventTrigger, qEndEventTrigger, qObserved,

(: Start event detection :)

2 (qStartEventTrigger ∧ true

∧ AS[‘ch1-treatment’] 6= active(@, @, @)

∧ AS’’[‘ch1-treatment’] = active(@, @, @)

⊃ StartEventTrigger’’

; StartEventTrigger’’ = StartEventTrigger’),

(: End event detection :)

2 (StartEventTrigger

∧ AS[‘mastectomy-proper’] 6= active(@, @, @)

∧ AS’’[‘mastectomy-proper’] = active(@, @, @)

⊃ EndEventTrigger’’ ∧ • (2 EndEventTrigger)

; EndEventTrigger’’ = EndEventTrigger’),

(: Support part of the behaviour :)

2 (StartEventTrigger ∧ qEndEventTrigger
∧ AS[‘patient-info-reconstruction’] = completed

⊃ Observed’’

; Observed’’ = Observed’)

`
(: The check part of the behaviour :)

2 (qEndEventTrigger ∧ EndEventTrigger’’ ⇒ Observed’’)

72

6.4. Optimisation

Notes:

1 Translation The translation was made under the assumption that plan
‘treatment’ will enter the active state only once.

6.4 Optimisation

Despite of all the automatic support of KIV, proofing a real-world goal is still a
tedious job. During verification it may not be possible to close a branch of the
proof tree. There may be several causes for this. The most important being that
the goal does not hold, but other possibilities are that the simplification rules are
not sufficient, or that the wrong rule has applied earlier in the trace. To help
to distinguish between those cases, the following formulas may be added to the
antecedent of the sequent (for example 4):

qGoalFailed,
2 (q(qEndEventTrigger ∧ EndEventTrigger’’ ⇒ Observed’’)

⊃ GoalFailed’’

; GoalFailed’’ = GoalFailed’)

These formulas will result in the addition of the GoalFailed variable on the
sequent. The condition part of the if in the formula is the negation of the goal
on the sequent. Therefore, if the goal is broken, GoalFailed’’ will put one the
sequent. This additional variable may help to distinguish between a failed goal and
method-related causes.

Since extra formulas are added to the sequent, it is very important to make sure
that the additional formulas will not influence the goal itself. In the formulas shown
here, this is ensured by the fact that nothing is written on the succedent, and no
other variables are assigned than GoalFailed (and of course GoalFailed is not part
of the model).

6.5 Conlusion

The attachment result provides a good starting point to create the final translation
to the required formalism. The KIV translation has been provided to demonstrate
one possible target. However, at this moment, work is being done on providing
translations to the SMV model checker.

The KIV translation maintains the separation between Generic GDL and model
specific extensions. The translations for Generic GDLelement like the behaviours
and delayed events will therefore remain valid even though another GDL extension
is used: for any new extension only the test part for events and conditions need to
be added. This way reusability is assured again (v, on page 7).

The chosen method to express the goal in KIV allows modular proof translation.
Modular translations are easily automated, which in turn assures the same transla-
tion result every time. The correctness of the resulting translation then follows from
the correctness of the individual parts of the translation (iii, iv, vi).

73

Chapter 6. Translation

Application of the proposed translation in KIV to actual goals with actual guide-
lines, has already yielded the first fully completed proof. In practice, proofing the
goal has become easier since the original goal can be recognised on the sequent. The
current phase within the goal model — before the start event, after the end event and
in between — can be read from the sequent at all times. Additionally, many of the
resulting branches of the proof tree can be closed automatically, or trivially by hand,
which yields a ‘clean’ proof tree and makes the proof feasible. Extra information
that simplifies the proof effort may be provided via the GoalFailed construct.

74

Chapter 7
Conclusion
This thesis has proposed a method of formalising natural language goals in such a
way that the domain expert is involved in every step that may change the meaning of
the goal. In every interpretation of natural language, choices will have to be made,
and implicit assumptions will have to be made explicit. Involvement of the domain
expert is essential since the domain expert is the only one who can decide whether
the proposed interpretation or choice is valid and acceptable or not.

To assure a common vocabulary between the domain expert and the formal
methods expert, the goal model was introduced in chapter 2. By providing both a
structured natural language expression and a formal expression for this goal model,
the formalisation itself has been reduced to a fairly straight forward exercise: the
structured natural language expression of the goal simply needs to be expressed using
the formal syntax which has similar structure. Before that task however, the original
goal must first be rewritten in terms of the goal model. After the formalisation the
goal needs to be fitted (attached) to the model under investigation and translated
to the target formalism. The process described here almost automatically leads to
the steps described in chapters 3 to 6.

7.1 Quality of conversion

To be able to assure the quality of the resulting conversion, in chapter 2, six require-
ments for the conversion process were formulated:

i. To direct the process and for ease of interpretation, work towards canonical
forms of the goal.

ii. Identify and clarify all assumptions and ambiguities present in the original
goal.

iii. Ensure correctness of every change to the goal: the domain expert should be
able to validate every change to ensure its validity for the domain.

iv. Ensure traceability. The conversion must be completely reproducible by means
of the intermediate results and the documentation.

v. Enable reusability of work at different stages. Maintain generality for as long
as possible.

vi. Reduce variability of the conversion result.

In this section, each of those requirements will be evaluated.

75

Chapter 7. Conclusion

7.1.1 Canonical form

The first step towards a canonical form is the result of the reduction. By explicitly
rewriting any goal in a pure descriptive form, a universal starting point for the rest of
the conversion process has been created. Although this form is not rigidly structured
in any way, it does provide an important point of convergence.

The normalisation steps yields a structured natural language form. This struc-
ture, imposed by the four bracketed groups, is a 1:1 reflection of the goal model.
Guidelines are provided which assist in the rewrite of the goal to this form. With
these guidelines, and the fact that it still concerns natural language it has become
feasible for the domain expert to perform the rewrite, and to check the equivalence
of the rewrite and the original.

The formal expression language for the goal model is Generic GDL. GDL has
globally the same structure as the structured natural language version. This makes
the transition to the formal version easy. With the structured natural language
version and GDL, the requirement of a canonical form has been satisfied.

7.1.2 Ambiguities

During any formalisation process, it is essential that any ambiguity which might be
present in the original version, has been resolved by the end. The biggest reduction
in ambiguity is achieved during the normalisation. This requires to rethink a goal
in terms of the goal model. Since most natural language goals do not yet explicitly
specify the start and end of a period, this automatically raises questions. Practical
experiences with the application of the normalisation to real-life goals (Protocure
workshop of 12-okt-2005, Augsburg) has confirmed this. Almost naturally the ques-
tion ‘what exactly does this mean’ came up.

The next step — the formalisation — requires to choose a specific kind of required
behaviour. While the time frame has already been determined in detail by the
normalisation step, the different options for the ‘behaviour’ in GDL induce more
rethinking of the goal. Especially differences like ‘observe once’ or ‘observe exactly
once’ will surface. After formalisation, the behaviour will also be clear of ambiguities.

During the attachment of the goal, conceptual ambiguities will be resolved. Since
finding equivalent concepts in the goal and the model first requires exact knowledge
about the meaning of the concept within the goal, doing so raises a discussion and
flushes the final ambiguities out. Also this has been demonstrated convincingly
during the earlier mentioned workshop.

As described here, the different steps target different kinds of ambiguities. By
following the steps every type of ambiguity will be addressed and the original goal
will almost naturally have been clear of ambiguities.

7.1.3 Correctness

Essential during the conversion is to ensure correctness of intermediate results at all
times. The main instrument to achieve this, is the continuous involvement of the
domain expert. By allowing the domain expert to evaluate every change, correctness
is maintained at all times. To make this involvement possible, a natural language

76

7.1. Quality of conversion

version of the current goal is maintained throughout the process. This allows the
expert to focus on the meaning of the goal in a familiar form.

The close tie between the structured version and the GDL expression, makes
is possible to maintain two equivalent versions of the same goal: one in natural
language and one formal version. By assuring that every change in the formal
version is immediately reflected in the natural language version at all times, the
domain expert can validate every proposed change.

Once the attachment is complete, no more changes are allowed. The translation
is a mechanical step which does not introduce any more changes. It is also the step
where GDL is abandoned. Therefore, this step will not and can not be checked by
the domain expert. However, the formal methods expert should ensure that the
translation function that is used produces correct code. By means of the formal
GDL semantics this can be confirmed.

Combining the input of the domain expert, and the knowledge of the formal
methods expert, correctness of the conversion result can be ensured.

7.1.4 Traceability

The traceability requirement has been added to the list to make sure that any result
can be reconstructed and the correctness can also be verified by other (domain)
experts. The main tool to achieve this is by adding documentation to the inter-
mediate result after each step. This way, not only the result of every single step
is preserved, but also notes one issues that where encountered during that step are
available afterwards.

Since the whole process has been subdivided in steps with specific tasks, this
reduces the amount of documentation required: in the context of the task, many
transformations are straight forward and don’t need to be explained. Traceability
follows from the method. However, it is up to both the domain expert, and the
expert in formal methods, to identify the choices which are not straight forward,
and to add proper documentation in those cases.

7.1.5 Reusability

To prevent duplicate work, reusability is an important aspect, also in the design of
the goal model and GDL. Although crested to express a wide variety of goals, the goal
model does not prescribe the exact kind of events that must be supported nor does
it do so for conditions. The goal model only provides a frame to describe a temporal
relation between events and conditions in general. This principle is also reflected in
the dualistic design of GDL. Generic GDL is strictly confined to elements which are
required to express the structure of the goal model, while a process model specific
extension must be added to be able to express the actual events and conditions which
are supported by that model. This dualistic nature allows translations of some target
platform to be reused for different GDL extensions: the only thing that needs to
be added is a new translation for specific events and conditions. The modular KIV
translation illustrates this.

77

Chapter 7. Conclusion

In the process the dualistic nature is reflected in the separation between the
formalisation and the attachment : the former is only about structure, the latter is
about filling in events and conditions. Because of this, reusability is possible in two
different stages: the formalisation result may be attached to different process mod-
els, and attached goals may be translated to different target formalisms (different
verification tools). During the conversion process, generality is preserved for as long
as possible.

In the Protocure project, an example of reuse of the formalisation result, is
attachment of a goal to more than one chapter of the formalised breast cancer
guideline. An example of reuse of an attached goal would be the translation both
to KIV and to the SMV model checking environment.

7.1.6 Variability

The final requirement is reduced variability. This is important for two reasons.
First, given some goal, one would expect the same (overall) formalisation result
independent of who performs the formalisation. Ideally there should be a one-to-one
mapping between natural language goals, and formalised goals. The method should
support finding the right formalised goal. Second, when the conversion process
is designed such that at each stage there is a logical way to proceed, the whole
process becomes much easier. The only variance in formalisations will result from
differences in interpretation of the original goal. Unfortunately, this by itself can not
be prevented although the involvement of the domain expert at least guarantees that
the chosen interpretation makes sense and is relevant in the context of the domain.

Several properties of the conversion steps described in this thesis add to the
invariability of the results. First, there is the task-oriented subdivision of the con-
version process. Every step consist of a specific task. The fixed order of executing
those tasks already reduces the variability. The canonical forms the are required in
several stages also lead the expert into performing the task in a specific way. Finally,
the vocabulary of the goal model in general and GDL specific do not allow many
different ways to express a single goal. Every step, up to and including the formali-
sation tries to achieve convergence to the unique GDL expression. The attachment
does not yield big changes to the formalisation result. Finally, the translation will
— due to the mechanical nature of the task — always yield the same result given
some GDL expression.

7.2 Future work

The conversion method proposed in this thesis satisfies the requirements which were
set in advance. Practical application has already yielded promising prospects. Fur-
ther use in the Protocure project will show whether the goal model has indeed
enough expressive power to encapsulate new goals that will surface.

One possibly useful addition to Generic GDL might be the introduction of a
guarded event. Such a guarded event would have a condition coupled to the event.
The event would then only register when the condition is satisfied. Currently this
behaviour can only be expressed on a limited basis for the start event. Whether or

78

7.2. Future work

not such an addition should be added depends on experiences in practical applica-
tion, and the costs with respect to the level of complexity. At all times the intuitive
nature of the goal model should be preserved.

GDL and the conversion process also need to proof themselves outside the Pro-
tocure project. One possible field of application might be the verification of Smart
Cards running Java. At the Universität Augsburg, a KIV implementation of the
Java VM has been built which is used to perform this kind of verification[12]. As
many goals are only available in natural language and need to be formalised, GDL
and the associated conversion process might be applied here. It would require defin-
ing a GDL-Java extension which allows reference to specific Java related events
and conditions. Once created, such an extension would be extremely useful in the
verification of software in general.

An obvious subject for future research follows from the observation in the At-
tachment that result goals in general are hard to verify. The first steps to try so
anyway, which are currently under investigation, focus on modelling effects next to
the procedural models. Using those effect models in a formal environment causes
difficulties for two reasons. First, given the tools used, there can be no contradiction
in the effects model. Second, the effects model is built by hand and only represents
one single patient group: the goal will only be proven for patients that behave ex-
actly like the model. This leaves a large amount of patients for which the model is
not verified. Additionally, the effect model needs to interact with the process model.
In the current efforts the models are still very tied together. This makes reuse of
effect models difficult. Work on incorporating effect knowledge should be continued,
primarily focussing on finding a way to solve the inconsistency problem, followed by
a solution for the close coupling of the models.

Support of uncertainty in the effect model would also be an interesting research
area. Then instead of trying to get a yes/no answers for one prototypical patient,
it might be possible to calculate a predicted success percentage of the goal for ev-
ery possible execution. Having those numbers, a very directed effort is possible to
improve the process for specific groups of patients. Ideally the statistical data re-
quired for the calculation would be taken from a database with actual patient data.
Obviously, to be able to use such an approach, a sound theory is required on how to
calculate reliable success rate based on available data. However, this is not trivial.

On the side of formal verification, promising results have already been recorded.
Proof abstractions which make symbolic execution of large plan hierarchies feasible
by folding the plan hierarchy into a much smaller trees seem to be within reach,
also on a larger scale. Additionally, proposed combinations of model checking and
symbolic execution, utilising the strong point of both methods will most likely pay
off. Perhaps the goal model also can add to the reduction of the size of the proof trees:
the structure of the goal model should make it easier to identify branches which will
not influence the goal. In this area there are many possibilities for further research.

Finally, the academic results from the Protocure project should find their way to
the everyday work of guideline designers. If verification tasks would be an integral
part of the design process and verification would taken into account at an early stage,
goals could be formulated in parallel and the conversion steps could be embedded in

79

Chapter 7. Conclusion

the guideline life cycle. By the combined effort of people that design the guidelines
and people that verify them, the quality of guidelines and the subsequent medical
care can be taken to an even higher level.

80

7.2. Future work

REFERENCES

[1] Michael Balser. Verifying Concurrent Systems with Symbolic Execution. PhD
thesis, University of Augsburg, Augsburg, 2005.

[2] John Fox, Alyssa Alabassi, Elizabeth Black, Chris Hurt, and Tony Rose. Mod-
elling clinical goals: a corpus of examples and a tentative ontology. In Studies
in health technology and informatics, 101, pages 31–45, 2004.

[3] Marjolein van Gendt. The power of Medical Quality Indicators. Master’s thesis,
Vrije Universiteit, Amsterdam, 2004.

[4] Interactive Theorem Proving [online]. Available from: http://www.

informatik.uni-augsburg.de/lehrstuehle/swt/se/research/kiv/.

[5] KIV at the DFKI GmBH [online]. Available from: http://www.dfki.uni-sb.
de/vse/projects/kiv.html.

[6] KIV Home Page at the University of Karlsruhe [online]. Available from: http:
//i11www.ira.uka.de/~kiv/KIV-KA.html.

[7] Mar Marcos, Michael Balser, Annette ten Tije, Frank van Harmelen, and
Christoph Duelli. Experiences in the formalisation and verification of medi-
cal protocols. In Artificial Intelligence in Medicine: 9th European Conference
on Artificial Intelligence in Medicine, pages 132–141, 2003.

[8] Silvia Miksch. Plan management in the medical domain. In AI Communications,
4, 1999.

[9] Protocure II [online]. Available from: http://www.protocure.org.

[10] J. Schmitt and M. Balser. Interactive Verification of Asbru - A Tutorial.
Technical Report 2006-3, University of Augsburg, February 2006. Avail-
able from: http://www.informatik.uni-augsburg.de/lehrstuehle/swt/

se/publications/.

[11] Yuval Shahar, Silvia Miksch, and Peter Johnson. The Asgaard project: A task-
specific framework for the application and critiquing of time-oriented clinical
guidelines. In Artificial Intelligence in Medicine, 14, pages 29–51, 1998.

[12] Kurt Stenzel. Verification of Java Card program. PhD thesis, University
of Augsburg, Augsburg, 2005. Available from: http://www.informatik.

uni-augsburg.de/lehrstuehle/swt/se/publications/.

81

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/research/kiv/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/research/kiv/
http://www.dfki.uni-sb.de/vse/projects/kiv.html
http://www.dfki.uni-sb.de/vse/projects/kiv.html
http://i11www.ira.uka.de/~kiv/KIV-KA.html
http://i11www.ira.uka.de/~kiv/KIV-KA.html
http://www.protocure.org
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/

Chapter 7. Conclusion

82

Appendix A
GDL: XML Specification
A.1 Generic GDL

A.1.1 The goal body

1 Element goal

Childname Element Occurence
precondition #2, p. 83 Once
time-specification #3, p. 83 Once
Once
‖ maintain-during-period #8, p. 84 Once
‖ observe-during-period #9, p. 84 Once
‖ avoid-during-period #10, p. 84 Once
‖ achieve-at-end #8, p. 84 Once
‖ sub-goal #11, p. 84 Once

2 Element precondition

Childname Element Occurence
abstract-condition #12, p. 85 Once

A.1.2 Time groups

3 Element time-specification

Childname Element Occurence
from #4, p. 83 Once
time-delimiter #5, p. 83 Once

4 Element from
until
open-until

Childname Element Occurence
abstract-event #16, p. 85 Once

5 Element time-delimiter — Abstract Element

Childname Element Occurence
Once
‖ until #4, p. 83 Once
‖ open-until #4, p. 83 Once
‖ until-end #6, p. 83 Once
‖ duration #7, p. 84 Once
‖ open-duration #7, p. 84 Once

6 Element until-end

83

Appendix A. GDL: XML Specification

7 Element duration
open-duration

Attribute name Content
value Numerical

unit ‘year’, ‘day’, ‘hr’, ‘min’, ‘sec’,
‘milli-sec’, ‘micro-sec’

A.1.3 Goals

8 Element maintain-during-period
achieve-at-end

Childname Element Occurence
abstract-condition #12, p. 85 Once

9 Element observe-during-period

Childname Element Occurence
Once
‖ abstract-condition #12, p. 85 Once
‖ abstract-event #16, p. 85 Once

Attribute name Content
Only with abstract-event

type ‘less’, ‘less-or-equal’, ‘equal’,
‘more-or-equal’, ‘more’,
‘not-equal’, ‘range’

lowerbound Numerical - with ‘range’

count Numerical

10 Elementavoid-during-period

Childname Element Occurence
Once
‖ abstract-condition #12, p. 85 Once
‖ abstract-event #16, p. 85 Once

11 Element sub-goal

Childname Element Occurence
precondition #2, p. 83 Once
time-specification #3, p. 83 Once
Once
‖ maintain-during-period #8, p. 84 Once
‖ observe-during-period #9, p. 84 Once
‖ avoid-during-period #10, p. 84 Once
‖ achieve-at-end #8, p. 84 Once
‖ sub-goal #11, p. 84 Once

84

A.2. GDL-Asbru

A.1.4 Conditions

12 Elementabstract-condition — Abstract Element

Childname Element Occurence
Once
‖ always-true #13, p. 85 Once
‖ condition-not #14, p. 85 Once
‖ condition-combination #15, p. 85 Once
‖ abstract-domain-condition #18, p. 85 Once

13 Elementalways-true

14 Element condition-not

Childname Element Occurence
abstract-condition #12, p. 85 Once

15 Element condition-combination

Childname Element Occurence
abstract-condition #12, p. 85 Twice

Attribute name Content
type ‘and’, ‘or’, ‘xor’

A.1.5 Events

16 Elementabstract-event — Abstract Element

Childname Element Occurence
Once
‖ event-combination #17, p. 85 Once
‖ abstract-domain-event #21, p. 86 Once

17 Elementevent-combination

Childname Element Occurence
abstract-event #16, p. 85 Twice

Attribute name Content
type ‘and’, ‘or’, ‘xor’

A.2 GDL-Asbru

A.2.1 Conditions

18 Elementabstract-domain-condition — Abstract Element

Childname Element Occurence
Once
‖ parameter-condition #19, p. 86 Once
‖ plan-state-condition #20, p. 86 Once

85

Appendix A. GDL: XML Specification

19 Elementparameter-condition

Attribute name Content
parameter-name String

type ‘less’, ‘less-or-equal’, ‘equal’,
‘more-or-equal’, ‘more’,
‘not-equal’

Once
‖ second-parameter-name String

‖ value String/Numerical

20 Elementplan-state-condition

Attribute name Content
plan-name String

type ‘equal’, ‘not-equal’
state ‘inactive’, ‘considered’,

‘possible’, ‘ready’, ‘rejected’,
‘activated’, ‘suspended’,
‘aborted’ or ‘completed’

A.2.2 Events

21 Elementabstract-domain-event — Abstract Element

Childname Element Occurence
Once
‖ transition #22, p. 86 Once
‖ param-update #23, p. 86 Once
‖ param-update-to #24, p. 87 Once

22 Element transition

Attribute name Content
plan-name String

direction ‘enter’, ‘leave’
state ‘inactive’, ‘considered’,

‘possible’, ‘ready’, ‘rejected’,
‘activated’, ‘suspended’,
‘aborted’ or ‘completed’

count Numerical

23 Elementparam-update

Attribute name Content
parameter-name String

86

A.2. GDL-Asbru

24 Elementparam-update-to

Attribute name Content
parameter-name String

type ‘less’, ‘less-or-equal’, ‘equal’,
‘more-or-equal’, ‘more’,
‘not-equal’

value String/Numerical

87

Appendix A. GDL: XML Specification

88

Appendix B
GDL: Presentation syntax
B.1 Generic GDL

1 Goal

−

Goal [Name]Str
Precondition

. Condition#7, p. 90

Time-specification
. Time-specification#3, p. 89

. Behaviour#2, p. 89

2 Behaviour

− Maintain-during-period
. Condition#7, p. 90

− Avoid-during-period
. Condition-or-Event#6, p. 90

− Observe-during-period
. Condition#7, p. 90

− Observe-during-period [Operator].CompOpr#13, p. 91
[Count]Num

. Event#8, p. 90

− Observe-during-period range [Lowerbound]Num ([Count]Num)
. Event#8, p. 90

− Achieve-at-end
. Condition#7, p. 90

−

Sub-goal
Precondition

. Condition#7, p. 90

Time-specification
. Time-specification#3, p. 89

. Behaviour#2, p. 89

3 Time-specification

−
From

. Event#8, p. 90

. Period-delimiter#4, p. 90

89

Appendix B. GDL: Presentation syntax

4 Period-delimiter

− Until
. Event#8, p. 90

− Open-until
. Event#8, p. 90

− Until end

− Duration [Time]Numerical [Unit].Unit#5, p. 90

− Open-duration [Time]Numerical [Unit].Unit#5, p. 90

5 Unit

− ‘year’, ‘day’, ‘hr’, ‘min’, ‘sec’, ‘milli-sec’ or ‘micro-sec’.

6 Condition-or-Event

− . Condition#7, p. 90

− . Event#8, p. 90

7 Condition

− (. Condition#7, p. 90)

− . Condition#7, p. 90 and . Condition#7, p. 90

− . Condition#7, p. 90 or . Condition#7, p. 90

− . Condition#7, p. 90 xor . Condition#7, p. 90

− . Atomic-condition#9, p. 91

8 Event

− (. Event#8, p. 90)

− . Event#8, p. 90 and . Event#8, p. 90

− . Event#8, p. 90 or . Event#8, p. 90

− . Event#8, p. 90 xor . Event#8, p. 90

− . Atomic-event#10, p. 91

− . Atomic-event#10, p. 91
+7−→ [Time]Numerical [Unit].Unit#5, p. 90

− . Atomic-event#10, p. 91 q +−→ [Time]Numerical [Unit].Unit#5, p. 90

90

B.2. GDL-Asbru

9 Atomic-condition

− always-true

− . Domain-Condition#11, p. 91

10 Atomic-event

− start

− ConditionToTrue: . Condition#7, p. 90

− ConditionToFalse: . Condition#7, p. 90

− . Domain-Event#12, p. 91

B.2 GDL-Asbru

11 Domain-Condition

− Param [Param]String [Operator].CompOpr#13, p. 91
[Value]Str/Num

− Param [Param]String [Operator].CompOpr#13, p. 91
[Param]Str

− Planstate [Plan]String [Operator].BoolOpr#14, p. 91
[State].State#16, p. 91

12 Domain-Event

− Transition [Plan]String [Dir].DirOpr#15, p. 91
[State].State#16, p. 91

− ParamUpdate [Param]Str

− ParamUpdateTo [Param]Str [Operator].CompOpr#13, p. 91
[Value]Str/Num

13 CompOpr

− ‘<’, ‘6’, ‘=’, ‘>’, ‘>’ or ‘ 6=’.

14 BoolOpr

− ‘=’ or ‘6=’.

15 DirOpr

− ‘enter’ or ‘leave’.

16 State

− ‘inactive’, ‘considered’, ‘possible’, ‘ready’, ‘rejected’,
‘activated’, ‘suspended’, ‘aborted’ or ‘completed’.

91

Appendix B. GDL: Presentation syntax

92

Appendix C
GDL: Formal semantics
C.1 Generic GDL

C.1.1 Goal body

I |= Goal A1:Name

Precondition
P1:Condition

Time-specification
From P2:Event

P3:Time−delimiter

P4:Behaviour

iff ∀ i, j > i . I|i |=c P1:Condition ∧ I|i, 0, 0 |=e P2:Event

∧ I, i, j |=p P3:Period−delimiter

∧ q∃ i < k < j . I, i, k |=p P3:Period−delimiter

⇒ I|j−1, i |=b P4:Behaviour

C.1.2 Period delimiters

I, i, j |=p Until P1

iff I|j, i, 1 |=e P1

I, i, j |=p Open-until P1:Event

iff j = |I|+ 1 ∨ I|j, i, 1 |=e P1:Event

I, i, j |=p Until end

iff j = |I|+ 1

I, i, j |=p Duration A1

iff ‖I|−2
i ‖ < A1 6 ‖I|−1

i ‖

I, i, j |=p Open-duration P1

iff j = |I|+ 1 ∨ ‖I|−2
i ‖ < P1 6 ‖I|−1

i ‖

C.1.3 Behaviour

I, i |=b Maintain-during-period

P1:Condition

iff ∀ k > i . I|k |=c P1

I, i |=b Avoid-during-period

P1:Condition

iff q∃ k > i . I|k |=c P1

93

Appendix C. GDL: Formal semantics

I, i |=b Avoid-during-period

P1:Event

iff q∃ k > i . I|k, i, 0 |=e P1

I, i |=b Observe-during-period

P1:Condition

iff ∃ k > i . I|k |=c P1

I, i |=b Observe-during-period = A2:Count

P1:Event

iff bP1cI,i = A2

Idem for “<”, “6”, “ 6=”, “>”, “>”.

I, i |=b Observe-during-period range A1:Lowerbound (A2:Count)

P1:Event

iff A1 6 bP1cI < A1 +A2

I, i |=b Achieve-at-end

P1:Condition

iff I |=c P1

I, i |=b Sub-goal

Precondition
P1:Condition

Time-specification
From P2:Event

P3:Time−delimiter

P4:Behaviour

iff ∀ i′, j′ > i′ . (I|i)|i
′ |=c P1:Condition ∧ (I|i)|i

′
, 0, 0 |=e P2:Event

∧ I|i, i′, j′ |=p P3:Period−delimiter

∧ q∃ i′ < k′ < j′ . I|i, i′, k′ |=p P3:Period−delimiter

⇒ (I|i)|j
′−1, i′ |=b P4:Behaviour

C.1.4 Conditions

Composite Conditions

The operator precedence (starting with the strongest binding) is: (), not, and, or,
xor:

A xor B and not C or D ⇔ A xor ((B and (not C)) or D)

I |=c P1:Atomic−condition

iff I(|I|) |= P1:Atomic−condition

94

C.1. Generic GDL

I |=c (P1:Condition)

iff I |=c P1:Condition

I |=c not P1:Condition

iff I 6|=c P1:Condition

I |=c P1:Condition and P2:Condition

iff I |=c P1:Condition ∧ I |=c P2:Condition

I |=c P1:Condition or P2:Condition

iff I |=c P1:Condition ∨ I |=c P2:Condition

I |=c P1:Condition xor P2:Condition

iff (I |=c P1:Condition ∨ I |=c P2:Condition)

∧ q(I |=c P1:Condition ∧ I |=c P2:Condition)

Atomic GDL conditions

σ |= always-true
iff true

C.1.5 Events

Composite events

The operator precedence is equal to those of conditions, augmented with the offset

operators:
+7−→ , q +−→ , (), and, or, xor:

A xor B and C
+7−→ 5 or D ⇔ A xor ((B and (C

+7−→ 5)) or D)

I, l, s |=e P1:Atomic−event

iff l < |I| ∧ I |= P1:Atomic−event

I, l, s |=e P1:Atomic−event
+7−→ A1

iff ∃ k . (I|k |= P1:Atomic−event) ∧ ‖I−(s+1)
k ‖ < A1 ≤ ‖I−s

k ‖

I, l, s |=e P1:Atomic−event q +−→ A1

iff ∃ k > l . (I|k |= P1:Atomic−event) ∧ ‖I−(l+1)
k ‖ < A1 ≤ ‖I−l

k ‖

I, l, s |=e (P1:Event)

iff I, l, s |= P1:Event

I, l, s |=e P1:Event and P2:Event

iff I, l, s |=e P1:Event ∧ I, l, s |=e P2:Event

I, l, s |=e P1:Event or P2:Event

iff I, l, s |=e P1:Event ∨ I, l, s |=e P2:Event

95

Appendix C. GDL: Formal semantics

I, l, s |=e P1:Event xor P2:Event

iff (I, l, s |=e P1:Event ∨ I, l, s |=e P2:Event)

∧ q(I, l, s |=e P1:Event ∧ I, l, s |=e P2:Event)

Atomic GDL events

I |= start
iff |I| = 0

I |= ConditionToTrue: P1:Condition

iff (I−1 6|= P1:Condition) ∧ (I |= P1:Condition)

I |= ConditionToFalse: P1:Condition

iff (I−1 |= P1:Condition) ∧ (I 6|= P1:Condition)

C.2 GDL-Asbru

The definition of events and conditions of GDL-Asbru are provided as a general
Condition or Event function. In the translation specification these named functions
need to be implemented. The required behaviour is given in natural language.

C.2.1 Domain conditions

σ |= Param A1:Param < A2:V alue

iff σ(A1:Param) < A2:V alue

Idem for “6”, “=”, “>”, “>” or “6=”.

σ |= Param A1:Param < A2:Param

iff σ(A1:Param) < σ(A2:Param)

Idem for “6”, “=”, “>”, “>” or “6=”.

σ |= Planstate A1:Plan = A2:State

iff σ[A1:Plan] = A2:State

Idem for “ 6=”.

C.2.2 Domain events

I |= Transition A1:Plan enter A2:State

iff I |= ConditionToTrue: Planstate A1:Plan = A2:State

I |= Transition A1:Plan leave A2:State

iff I |= ConditionToFalse: Planstate A1:Plan = A2:State

96

C.2. GDL-Asbru

I |= ParamUpdate A1:Param

iff There was a write to parameter A1 during the transition
to the last state of I.

I |= ParamUpdateTo A1:Param A2:Operator A3:V alue

iff I |= ParamUpdate A1:Param

∧ I(|I|) |= Param A1:Param A2:Operator A3:V alue

97

	Abstract
	Acknowledgements
	Introduction
	Formal verification
	Protocure
	Problem statement
	Structure

	Goals in formal verification: an overview
	Goals and formal verification
	The Goal model
	The observer
	Related work

	Structured conversion
	The actual steps

	Conversion philosophy

	Reduction and Normalisation
	Reduction
	Handling time annotations

	Normalisation
	The normal form
	Patterns

	Conclusion

	Formalisation
	Definitions
	The Goal Definition Language
	Conditions and events
	The start of the period
	The end of the period
	Behaviours

	Patterns in GDL
	Pattern 1: Repetitive goal
	Pattern 2: Repetitive goal with explicit bounds
	Pattern 3 and 4: Avoid during the period
	Pattern 5: A should happen before B

	Formalisation
	Example 1
	Example 2
	Example 3
	Example 4

	Conclusion

	Attachment
	Difficulties
	GDL-Asbru
	The attachment
	Example 1
	Example 2
	Example 3
	Example 4

	Conclusion

	Translation
	Mechanical translation
	GDL to KIV
	Asbru in KIV
	Basic principles of the translation
	Events, conditions and behaviours

	Translation
	Example 1
	Example 4

	Optimisation
	Conlusion

	Conclusion
	Quality of conversion
	Canonical form
	Ambiguities
	Correctness
	Traceability
	Reusability
	Variability

	Future work

	References
	GDL: XML Specification
	Generic GDL
	The goal body
	Time groups
	Goals
	Conditions
	Events

	GDL-Asbru
	Conditions
	Events

	GDL: Presentation syntax
	Generic GDL
	GDL-Asbru

	GDL: Formal semantics
	Generic GDL
	Goal body
	Period delimiters
	Behaviour
	Conditions
	Events

	GDL-Asbru
	Domain conditions
	Domain events

